-
RAG的发展伴随着LLM的革新而进步的。
-
从发展的时间线上来看,可以分为基于提示的方法、基于微调的方法和基于强化学习的方法。
-
自2025年以来, reasoning模型展示了其强大的推理能力,将检索能力与推理能力相结合,应该是下一代RAG的发展方向。
Reasoning与RAG协同的目的
-
通过推理增强检索的准确性和灵活性;
-
推理通过动态查询扩展、歧义消除和多跳证据聚合实现自适应检索,克服了基于关键词或嵌入方法的局限性
-
-
通过使用丰富的上下文检索知识来加强复杂的推理
-
检索依据最新的、特定领域的或模型权重中缺少的罕见信息进行推理,这对于可解释性、多步骤推理和整合不同来源至关重要。
-
Reasoning与RAG协同的方式
主要分为两种:
-
预定义工作流,它使用具有预设协调规则的逻辑架构;
-
每个阶段都有严格的输入输出规则,并且不会根据中间结果进行动态更改。
-
这种模块化设计确保了对复杂任务的可控性和结构化推理。
-
所有步骤都将执行,而不管中间结果如何,从而保证了可重复性和稳定性,同时避免了动态决策带来的不确定性。
-
虽然牺牲了适应性,但这种方法提供了程序的可预测性,非常适合需要清晰推理路径的场景。
-
-
动态工作流,依赖于通过实时决策引擎进行的上下文感知的自适应协调。
-
主动性驱动推理
-
反思性驱动推理
-
反馈性驱动推理
-
LLM在推理过程中积极评估上下文需求,通过混合反馈协调机制自主确定调用外部工具或资源的最佳时机。
-
通过消除固定的迭代单元和预定的工具调用序列,实现执行路径的动态演变,通过基于中间推理结果实时调整计算工作流,在复杂认知任务中展现出优越的适应性。
-
动态工作流可分为:
-
这些方法通过不同的机制来实现对复杂任务的适应性和灵活性。
-
Reasoning与RAG协同的几种方案
协同方案,分为推理过程和推理优化两部分。
推理过程的方案
-
基于LLM/CoT的推理方法
-
通过将链式推理(CoT)与LLMs相结合,为RAG系统提供了明确的多步推理指导,并能够动态地整合外部知识。
-
例如,ActiveRAG通过“自我查询→知识同化→思维适应”的链式推理过程,将外部文档与LLMs的内存合并,从而创建结构化的知识。
-
PlanRAG则通过明确使用CoT来生成可执行的多步计划,并通过闭环的“计划-执行-反馈”循环动态调整操作。
-
-
特殊标记预测
-
通过在LLMs的词汇表中嵌入领域特定或动作特定的标记(例如 “[Web-search]”、“[Retrieve=Yes]”、“<begin_of_query>”),模型可以在文本生成过程中自主触发工具或进行自我反思,从而将静态推理链转变为条件工作流。
-
例如,Self-RAG和SmartRAG使用专门的标记(如“Retrieve”、“ISREL”、“[RETRIEVE]”)来管理检索激活、相关性检查和输出验证,将任务划分为检索启动、文档评估和知识落地阶段。
-
-
基于搜索的推理
-
通过采用结构化的搜索策略来实现动态信息探索和多步推理,结合外部知识。
-
当前的方法主要遵循树搜索、蒙特卡洛树搜索(MCTS)和强化学习优化策略网络三种范式。
-
例如,StePORec采用多步树结构推理方法,在每个节点迭代检索不同的服装搭配知识和用户偏好,最终实现生成性推荐。
-
OmniThink通过信息树扩展主题分析,通过生成子查询来指导广度优先或深度优先检索。
-
-
基于图的推理
-
基于查询流的搜索图(例如FinSearch)
-
基于知识关联的扩展图(例如ToG-2.0)
-
通过明确建模知识交互路径的拓扑结构,为RAG系统中的多跳推理提供了一种新方法。
-
当前的方法分为两类:
-
FinSearch构建了一个有向无环图(DAG),其中节点是原子子查询(例如股票价格、财务报告),边捕获逻辑和时间依赖关系。预规划器将查询分解为子查询序列,使用图遍历来控制信息流,并在出现冲突时动态调整路径。
-
-
外部求解器
-
通过整合外部求解器,将RAG与推理的结合实现为一种优化问题。
-
例如,ARM将用户查询分解为与数据集中的N-gram匹配的关键词,通过信息对齐模块生成初始检索候选集。
-
然后,在结构对齐阶段,混合整数规划(MIP)求解器基于预定义的目标函数对候选对象进行全局过滤,该目标函数最大化检索对象与查询的相关性以及它们之间的相互兼容性。
-
优化推理的方案
-
基于提示(Prompt-Based)的方法
-
通过自然语言模板和特殊标记(如、)来引导模型行为
-
利用提示设计将复杂的推理任务分解为可管理的步骤,并指导LLMs在生成过程中遵循特定的逻辑结构。
-
例如,Co-STORM和WriteHere等方法通过角色分配、阶段划分和特定操作指令来引导多步推理,提高了推理过程的可解释性,并通过要求引用检索结果、强制特定输出格式以及基于检索知识的反思和校准等策略来提高结果的可靠性。
-
-
基于微调(Tuning-Based)的方法
-
通过注入领域特定知识或蒸馏推理能力来优化模型参数,使模型能够更好地适应检索增强的推理链。
-
例如,CoRAG和DeepRAG通过全参数微调和多任务学习构建端到端的多步推理框架,提高了模型分解复杂问题和动态调整检索策略的能力。
-
MCTS-KBQA和Self-RAG则通过监督微调来优化模型对特殊标记的生成,从而提高模型在知识图谱协议下的指令生成能力和自我监督生成控制能力。
-
-
基于强化学习(RL-Based)的方法
-
通过结果奖励模型(ORM)或过程奖励模型(PRM)优化检索-推理策略,使模型能够根据结果反馈动态调整推理路径。
-
例如,RAG-Gym、ReARTeR、SmartRAG等方法通过不同的强化学习算法和奖励机制,优化模型在检索、推理和验证等操作中的决策过程,提高了模型在复杂任务中的推理能力和效率。
-
推理的风险预知
可以从三个方面来考查:
(1)时间动态,强调数据和推理环境的快速变化;
(2)领域特异性,侧重于行业知识和结构化数据的深度整合;
(3)推理链复杂性,反映了对多阶段推理和查询细粒度分解的要求。
-
从RAG到RAG+reasoning的进步增加了多步骤推理能力,通过复杂的推理实现复杂任务处理、自主决策和更具上下文感知的响应。
-
这是以增加延迟、符元消耗、处理需求以及系统集成和维护的复杂性为代价的。
-
推理层的自主性也带来了不透明性、不可预测性以及更高的安全性和可靠性风险。
在实际落地应用过程中,需要慎重考虑。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓