【Pandas】pandas DataFrame agg

Pandas2.2 DataFrame

Function application, GroupBy & window

方法 描述
DataFrame.apply(func[, axis, raw, …]) 用于沿 DataFrame 的轴(行或列)应用一个函数
DataFrame.map(func[, na_action]) 用于对 DataFrame 的每个元素应用一个函数
DataFrame.applymap(func[, na_action]) 用于对 DataFrame 中的每一个元素应用一个函数
DataFrame.pipe(func, *args, **kwargs) 用于实现链式编程风格的方法
DataFrame.agg([func, axis]) 用于对 DataFrame 的数据进行聚合操作
DataFrame.aggregate([func, axis]) 用于对 DataFrame 进行聚合操作的方法
DataFrame.transform(func[, axis]) 用于对 DataFrame 的列或行应用函数
DataFrame.groupby([by, axis, level, …]) 用于进行分组操作的核心方法

pandas.DataFrame.groupby()

pandas.DataFrame.groupby() 是 Pandas 中用于进行分组操作的核心方法。它允许你根据一个或多个列的值将数据分成不同的组,然后对每个组应用聚合、转换或过滤等操作。


一、方法签名
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, observed=<no_default>, dropna=True)

二、参数说明
参数 类型 描述
by mapping, function, label, or list of labels 分组依据。可以是列名、函数(用于处理索引)、字典映射、Series 或列表(多列分组)。
axis int or str, default: 0 沿哪个轴分组:0 表示按行分组(默认),1 表示按列分组。
level int or str, optional 如果轴是 MultiIndex,则按指定层级分组。
as_index bool, default: True 是否将分组键作为结果
内容概要:本文档详细介绍了Android高级控件的使用方法及其应用场景。首先讲解了下拉列表Spinner,包括其两种表现形式(下拉列表形式和对话框形式),并介绍了适配器Adapter的基础概念及其三种主要类型:数组适配器ArrayAdapter、简单适配器SimpleAdapter和基本适配器BaseAdapter,重点阐述了它们各自的特点和使用步骤。接着,文档对列表视图ListView进行了深入探讨,涉及分隔线样式、按压背景等属性的设置方式。随后,描述了网格视图GridView,详细解释了其拉伸模式的效果及取值。对于翻页视图ViewPager,不仅介绍了基本概念,还展示了翻页标签栏PagerTabStrip的具体应用,特别是用于创建启动引导页。最后,文档介绍了碎片Fragment的概念,强调了其在大屏设备上的优势,以及与ViewPager结合使用的实战案例——记账本应用。 适合人群:有一定Android开发基础,希望深入了解并掌握高级控件使用的开发者。 使用场景及目标:①掌握下拉列表、列表视图、网格视图、翻页视图等高级控件的实现细节;②理解适配器的作用及其不同类型的使用场景;③学会使用Fragment优化应用界面布局,提高用户体验;④通过具体案例(如记账本),将所学控件应用于实际开发中。 阅读建议:本文档内容详实,涵盖多种高级控件的理论知识与实践技巧。建议读者在学习过程中结合官方文档或相关资料进行对比研究,同时动手实践,以便更好地理解和掌握这些控件的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值