深入探究AI大模型在数字化转型中的运用

 AI+条件下企业业务运行将依靠业务人员、AI智能体、业务信息系统或信息物理系统的有机结合。

01

AI大模型给数字化转型带来的创新

1.自主生成内容;实现其他“以数据为中心的业务变革”技术手段所不能;

2.可以有效应对非结构化数据;在一定程度上跳过了“业务活动步骤化”、“步骤环节要素化”、“要素数据规格化”的约束,直接实现了“以数据为中心的业务变革”。

02

有了AI大模型,企业开展业务“数字化”是否还有必要

在有了大模型之后,是不是就不需要开展业务“数字化”,只需要把问题直接丢给AI去解决呢?

基于数字看板、数字孪生的传统方法在应对实现了“业务活动步骤化”、“步骤环节要素化”、“要素数据规格化”的业务数据时,就像数码照片的清晰度一样,效果是可度量、可预测、可控制的。

AI大模型可以有效应对自然语言描述、图片、视频等非结构化数据,但其基于概率统计和模式匹配的基本原理,决定了在基于非结构化数据开展智能生成和决策时,其效果难以度量和预测,无法避免“AI幻觉”这类错误。而在应对准确标注、清晰明确的结构化数据和逻辑推理问题时,其生成内容的准确度将得保证,例如解答数学题、编写程序等。

笔者认为,进入AI时代,开展业务“数字化”仍然是企业数字化转型并有效应用AI的必要之路。

03

AI大模型在企业落地应用的两大必要接口

1.与知识库的接口:利用RAG(Retrieval-augmented Generation,检索增强生成)或PEFT(Parameter Efficient Fine Tuning,参数高效微调)等技术,将本地业务知识和规则库接入AI大模型;

2.与业务信息系统或信息物理系统(CPS)的接口:利用开源大模型的开发接口,从大模型的输出内容中提取控制信息和参数,发送给业务信息系统(形成AI Agent智能体信息系统,如智能体“Manus”)或信息物理系统(具身智能体,如机器人、智能驾驶汽车等),促使其自动化执行,并将上述系统的运行反馈和运行结果数据以RLHF(Reinforcement Learning from Human Feedback,人类反馈强化学习)等方式重新提供给大模型供其优化:

对于其中实现了“数字化”,具备确定性规则和结构化参数的业务活动或部分步骤,AI大模型依托Agent框架和ReAct(Synergizing Reasoning and Acting in Language Models,在语言模型中协同推理与行动)上下文学习技术,基于既定步骤和交互方式,以多智能体协作的方式,指引业务信息系统或信息物理系统自主执行业务活动,并将运行结果反馈给业务人员。

对于未实现“数字化”的业务活动或部分步骤,由AI大模型自主或在业务人员的输入提示、过程监督和必要干预下完成工作。或将半成品提供给业务人员继续完成,提高业务人员工作效率,减少人为失误。

04

是否所有业务都要使用AI大模型

No,在面对基于确定性规则、完全实现了“数字化”的业务时,传统的基于数字看板和数字孪生的方法已经实现了业务效果的可度量、可预测、可控制,无需使用具有不可忽视的Token成本及难以避免的“AI幻觉”的大模型。

05

AI+条件下企业业务运行的基本模式

AI+条件下企业业务运行将依靠业务人员、AI智能体、业务信息系统或信息物理系统的有机结合,也是企业在AI+条件下使用AI大模型的基本模式:

AI智能体、业务系统和用户交互关系图

基本假设:1.企业向AI大模型提供了覆盖企业所有业务运行所需知识和规则的知识库;2.AI大模型与所有必要的业务信息系统或信息物理系统结合形成了AI智能体。 

  • STEP1:企业业务人员在开展工作前,向大模型咨询工作步骤;

  • STEP2:大模型基于业务人员的描述,判断相关业务是否已有成熟的基于信息系统运行的数字化流程,如有,转步骤3,否则转STEP4;

  • STEP3:大模型提示用户进入相关信息系统入口,用户确认符合需求转STEP5,否则转STEP4;

  • STEP4:大模型基于思维链(CoT),向用户提出开展工作的步骤,及每一步骤所需的注意事项,提示用户进入第一个业务步骤,期间可能会出现用户与大模型的多轮次交互;转步骤6;

  • STEP5:用户进入相关业务的信息系统入口,自主开展后续业务办理,直至遇到困难后,转STEP1;

  • STEP6:大模型基于业务知识库和规则库,自主生成解决方案:对于具备确定性规则和结构化参数的业务活动步骤,转STEP7;对于未实现“数字化”的业务活动或部分步骤,转STEP8;

  • STEP7:直接基于既定步骤和交互方式,以多智能体协作的方式,指引业务信息系统或信息物理系统自主执行业务活动,并将运行结果反馈给业务人员;例如多智能体协同软件开发、产线机器人协同生产等。

  • STEP8:由AI大模型自主或在业务人员的输入提示、过程监督和必要干预下完成工作。或将半成品提供给业务人员继续完成。

06

AI大模型两种不同模式的效果对比

前几天,笔者偶然在《南风窗》上看到一篇关于在AI的浪潮冲击下,大批网文翻译译员被逼转行的报道。

在这篇报道中,大批译员原有的人工翻译工作内容被迫转变为对AI翻译后的文本进行审核与校对,并且不得不放弃自己的翻译风格,主动适应AI自动翻译生成的语言模式及其思考方式。而由于AI在语言文化本地化翻译能力方面的局限性,译员们的大量时间花费在修改AI翻译的内容中。在这种工作模式下译员们的工作效率并没有如客户所想得到提升,薪酬却被客户大幅降低,造成了大批译员被逼转行的情况。

这篇报道引起了笔者的思考。翻译行业引入AI本来是一件好事,为什么没能提高整体的翻译效率和质量,反而造成了译员的大规模失业?怎样改善译员与AI的协作模式呢?笔者提出AI大模型在数字化转型中运用的两种不同模式供探讨:

A模式

AI为主导的AI与员工协作模式

运行模式:Leader直接把任务交给AI智能体,AI智能体以思维链方式将任务分解为先后步骤:开展第一步工作中,将生成的半成品交给员工,员工在此基础上继续完善,将成品交付AI智能体。AI智能体继续开展下一步骤工作……

特点:业务流以AI智能体为核心驱动,员工需要适应AI的工作节奏和风格。在主价值链上员工已被AI替代,其职责变为完成主价值链业务流中AI无法完成,需要人工去核查、完善的部分。

结果:由于员工在与AI智能体协作过程中,交付成果的效率没有提升,员工成为了木桶上的“短板”,业务流的整体运行效率并没有明显提高。

各方反映

  1. Leader:认为AI做得很不错,是员工使用AI的意识和能力不足,低效率的员工拖了业务的后腿。准备在企业内部开展学习AI知识技能的培训,轰轰烈烈大干一场,然后开展以裁员为核心的降本增效?

  2. 员工:感觉压力山大又委屈:工作很努力了,但效率没有提高,收入可能还降低了。对于下一步可能的AI知识技能的培训一头雾水,不知道该学些什么,可能又是漫无边际的AI写作、办公技能之类的东西。

  3. 客户:还是一样的产品,功能没提高,价格没便宜甚至更贵了,服务界面却变得更加复杂了,以前只需要跟售后人员说清楚就可以了,现在还要登录A系统、B系统,填写一大堆表单,不清楚怎么填,好麻烦啊,客服还是个机器人。。。

B模式

员工为主导的AI与员工协作模式   

运行模式:Leader将任务安排给员工,员工在AI智能体辅助下完成全部任务。

特点:业务的执行以员工为核心,AI智能体适应员工需要,依据指令任务自主对业务信息系统或信息物理系统进行操作,并以思维链输出的方式响应员工咨询或反馈执行结果。员工仍然在业务链主价值上居于主导地位,而将基于业务知识库规则库的方案步骤提示、重要信息检索、工作模板生成及其他技能性、重复性子任务交给AI智能体去完成。

结果:由于员工在完成工作任务过程中,依据自身需要进行了分解,有效利用了AI智能体在信息检索、知识运用和技能性任务方面的优势,员工的整体工作效率得到大幅提升,工作产出的标准化程度增强,错误率降低、质量提高,以效率提升为基础实现了企业整体业务流的“降本增效”

各方反映

  1. Leader:员工的工作效率大幅提升,带动了企业劳动生产率的整体提升和产品竞争力的上升。

  2. 员工:AI真是个好东西!我还要进一步学习研究怎么用好,还要对AI智能体提出一些具体的改进建议。

  3. 客户:同样的价格享受到了更好的服务与产品。 

07

几点思考

1.企业应用AI的初心是什么?

提高企业整体竞争力,通过两方面来实现:。

(1)为客户带来更多、更高价值;

(2)提高员工的劳动生产率。

2.在企业业务中,AI和员工的关系是什么?

企业的主体和核心,一定是员工,而非任何资产、信息系统或AI智能体。因为企业的价值需要通过员工去创造。对基于主价值链的业务全生命周期而言,AI智能体无法端到端自主完成,仍然需要员工去负责和深度参与。企业生产效率取决于每一名员工的劳动生产率。

不论是传统的信息化建设,数字化转型建设还是业务AI智能体,企业的基本考虑应当是以业务价值为核心,而业务价值是由员工创造的,各类信息系统及AI智能体存在的意义是为了提高员工的劳动生产率或者工作能力

3.AI智能体发挥作用的关键是对企业业务知识库和规则库的应用

AI智能体处于员工与业务信息系统或信息物理系统之间,接收企业员工提出的信息查询、步骤/方法咨询、技能型工作任务,通过学习业务知识库/规则库,形成相应的解决方案,自主决策并操作使用业务信息系统或物理信息系统,将任务完成情况及时反馈给员工。

在这个交互过程中,作为AI智能体核心的AI大模型,其基于思维链产生业务解决方案并自主控制业务系统执行的关键在于对企业业务知识库和规则库的应用。AI大模型一定程度上跳过了传统 的业务数字化业务活动步骤化”、“步骤环节要素化”、“要素规格数据化”的约束,直接实现了“以数据为中心的业务变革”

以这个过程中被广泛应用的RAG技术为例,大模型将业务知识库规则库中的文件通过数据预处理、分块、向量化、索引化之后,在非结构化的知识库文件或数据集中自动实现了类似“业务活动步骤化”、“步骤环节要素化”、“要素规格数据化”的效果,从而在用户提交查询的时候,通过将用户的查询转换为向量,在知识库中计算查询向量与文档向量之间的相似性,得到检索结果,再经过一系列处理后由生成式模型提供回答作为解决方案输出。

因此,AI智能体发挥作用的关键是对企业业务知识库规则库的处理和运用,从而实现业务活动开展前的步骤化指导和提示,以及业务步骤执行过程中的范式化、模块化、模板化、模型化运用。

最后回到笔者在本文开头提到的那篇报道,报道中嵌入的《我们的翻译官》电视剧海报中的一句话可以总结本文“翻译当中啊,译员是主人,机翻是仆从。信、达、雅,去芜存菁,这样才能体现译员的价值和魅力!”

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值