更高效使用 AI 大模型,测试工程师的提示词编写框架,大模型+测试岗

前言

随着 AI 大模型在软件测试领域的广泛应用,提示词工程(Prompt Engineering)已成为测试工程师提升效率的关键技能。通过精准的提示词设计,我们可快速生成测试用例、优化测试场景、生成自动化脚本、以至实现智能化的测试覆盖。

那么如何更有效地在利用大模型时,让大模型更高效地协助我们得到期望的结果,好的提示词能让我们事半功倍。下文就总结下,对测试工程师而言,怎么编写出好的提示词框架

拆分复杂需求,准确描述问题

AI 大模型的效果高度依赖输入提示词的清晰度,也就是尽可能减少二义性。所以在输入提示词时,应尽可能将复杂任务拆解为具体需求,例如:

场景化的描述:明确测试目标(如“生成登录功能的边界值测试用例”),而非模糊指令(如“帮我写测试用例”)。•约束条件:添加格式要求(如“以表格形式输出”)、优先级(如“仅包含高风险场景”)或技术限制(如“不涉及第三方接口”)。•示例引导:可以提供示例数据或模板,帮助模型理解期望的输出结构。

利用结构化框架,提升输出稳定性

通过定义结构化的提示词框架,可以约束模型行为,并减少随机性干扰:

1.角色设定:指定模型扮演专业角色(如“你是一位资深测试专家,擅长设计高覆盖率的测试场景”)。2.分步指令:将复杂任务分解为多步骤(如“第一步:分析需求文档;第二步:识别关键路径;第三步:生成用例”)。3.思维链(Chain-of-Thought):虽然目前很多模型都提供了深度思考能力,但通过提示词引导模型的分析,可以简化模型的思考推理方向。例如“请先分析用户操作流程,再重点针对异常场景生成测试用例”。

渐进式的迭代优化,持续改进提示词

大模型通常会保留对话上下文,针对每次反馈的结果,应不断校正,逐渐向最佳输出靠拢

反馈修正:对模型输出中的错误及时指正(如“第 2 条用例未覆盖超时场景,请补充”),并要求重新生成。•参数调整:控制输出长度(如“请用 50 字以内描述”)、温度系数(Temperature)以平衡模型的创造性与准确性。•交叉比对:目前开放大模型有很多,能力不一,对于

常见的一些校正场景:

问题原因改进方法

输出过于宽泛

需求描述模糊

添加具体场景、格式、优先级约束

结果重复或冗余

未明确限制输出范围

排除不需要的场景(如指定“仅输出未覆盖的边界值场景”)

技术术语错误

模型缺乏领域知识

提供术语表或指定角色(如“金融系统测试专家”)

案例分析

基于以上原则,以我们要测试 https://www.saucedemo.com 这个网站的购物流程为例,要打大模型帮助我们生成一系列测试用例,提示词框架可以按下面的方式设定:

假设你是一名经验丰富的软件测试工程师,负责对电商网站 https://www.saucedemo.com/ 的核心购物流程进行端到端的功能测试。

任务:为以下用户场景生成详细的、高优先级的正向和反向测试用例。重点关注从商品选择到成功下单的完整流程。

被测网站: https://www.saucedemo.com/ 
测试用户凭据:
•标准用户(StandardUser): standard_user / secret_sauce•有问题的用户(ProblemUser): problem_user / secret_sauce (用于观察特定错误行为)

核心购物流程步骤:
1.用户登录2.浏览商品列表(InventoryPage)3.选择至少两件不同商品并添加到购物车4.查看购物车(CartPage)5.在购物车页面验证商品信息(名称、数量、价格)和总价6.进入结账信息页面(Checkout:YourInformation)7.填写有效的结账信息(姓、名、邮政编码)8.进入结账概览页面(Checkout:Overview)9.在概览页面验证商品信息、总价(含税)10.完成购买(Checkout:Complete!)11.验证订单成功信息

测试用例要求:
•正向测试用例:覆盖使用标准用户成功完成购物流程的每个步骤,确保功能按预期工作。•反向测试用例:•尝试在结账信息页面输入无效数据(例如,姓、名、邮编为空或格式错误)。•尝试在购物车为空时进行结账。•(可选)使用 problem_user 登录,观察并记录在购物流程中可能出现的异常行为,特别是商品图片、添加购物车或结账环节。
输出要求:•每个测试用例应包含:用例 ID (TC_SAUCE_SHOP_XXX)、测试描述、前置条件(如已登录并添加商品)、测试步骤(清晰、可执行)、预期结果、实际结果(预留填写)、状态(预留填写)、优先级(高/中/低)。•优先生成高优先级的测试用例。


输出格式:请将测试用例以Markdown表格形式输出,包含以下列:用例 ID,测试描述,前置条件,测试步骤,预期结果,优先级。

约束说明:
•假设税率为8%。•关注 UI 元素的交互和页面跳转的正确性。•如果对某些特定元素的 ID 或Class不确定,可以使用通用的描述,例如“点击添加到购物车按钮”或“输入姓名字段”。

以上提示词比较好地对应了相关的提示词框架原则:

明确的角色:"假设你是一名经验丰富的软件测试工程师..."•清晰的任务:"为以下用户场景生成详细的、高优先级的正向和反向测试用例。重点关注从商品选择到成功下单的完整流程"•充分的上下文信息: 被测 URL、用户信息、用例侧重点、税率假设•指定输出格式:"请将测试用例以 Markdown 表格形式输出,包含以下列:用例 ID测试描述前置条件测试步骤预期结果优先级。"•明确的具体要求和约束:用例和输出的具体要求,•引导思考方向:使用 problem_user 生成异常用例

最终通过这样的提示词,通过 Deepseek,我们会得到如下一份生成的用例:

高优先级核心购物流程测试用例

用例 ID

测试描述

前置条件

测试步骤

预期结果

优先级

正向测试用例

TC_SAUCE_SHOP_001

标准用户成功登录并进入商品列表页

1. 访问 https://www.saucedemo.com/
2. 输入用户名 standard_user 和密码 secret_sauce
3. 点击登录按钮

登录成功,跳转至商品列表页(Inventory Page)

TC_SAUCE_SHOP_002

添加两件不同商品到购物车并验证数量

用户已登录

1. 在商品列表页选择两件不同商品,分别点击“添加到购物车”按钮
2. 检查购物车图标显示数量为 2

购物车图标数量更新为 2,且两件商品均显示在购物车页面

TC_SAUCE_SHOP_003

购物车页面验证商品信息和总价(不含税)

用户已添加两件商品到购物车

1. 点击购物车图标进入购物车页面
2. 核对商品名称、数量、单价
3. 计算总价(商品 1 价格 + 商品 2 价格)

商品信息正确,总价显示为两件商品价格之和

TC_SAUCE_SHOP_004

完成有效结账信息并验证含税总价

用户已进入结账信息页面

1. 在结账信息页面输入有效姓、名、邮编(如:John/Doe/12345)
2. 点击“继续”按钮
3. 在概览页面验证总价(总价 = 商品总价 * 1.08)

跳转至结账概览页面,总价含 8%税且计算正确

TC_SAUCE_SHOP_005

完成购买并验证订单成功信息

用户已进入结账概览页面

1. 点击“完成”按钮

显示“THANK YOU FOR YOUR ORDER”成功信息,返回商品列表页

反向测试用例

TC_SAUCE_SHOP_006

结账信息页面姓名为空时提交表单

用户已进入结账信息页面

1. 留空姓名字段,输入有效邮编(如:12345)
2. 点击“继续”按钮

提示“First Name is required”,阻止跳转

TC_SAUCE_SHOP_007

结账信息页面邮编格式错误(如非数字)

用户已进入结账信息页面

1. 输入有效姓、名,邮编为“ABC12”
2. 点击“继续”按钮

提示“Postal Code is invalid”,阻止跳转

TC_SAUCE_SHOP_008

购物车为空时尝试结账

用户已登录且购物车为空

1. 点击购物车图标进入购物车页面
2. 点击“结账”按钮

提示“Cart is empty”或阻止跳转至结账页面

Problem User 测试用例

TC_SAUCE_SHOP_009

Problem User 添加商品时图片显示异常

Problem User 已登录

1. 浏览商品列表页
2. 检查商品图片是否加载正确(如:图片错位、无法显示)

商品图片显示异常(如空白图、错误图片)

TC_SAUCE_SHOP_010

Problem User 结账时总价计算错误

Problem User 已添加商品到购物车

1. 完成结账流程至概览页面
2. 验证总价是否等于商品总价 * 1.08

总价计算错误(如未含税或计算值偏差)

补充说明

1.优先级分配:核心流程(登录、添加商品、结账)和关键异常场景(空字段、无效数据)设为高优先级。2.Problem User:用于验证特定异常行为(如 UI 渲染错误或逻辑漏洞)。3.实际结果/状态:执行时需根据实际观察填写(如“通过”、“失败”或“阻塞”)。4.税率计算:假设商品总价为 $X,含税总价应为 X * 1.08,保留两位小数(如 $21.99 * 1.08 = $23.75)。

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值