东方财富资管领域大模型应用案例
一、背景与意义
1.1 大模型应用背景
放眼全球,生成式AI等新技术的飞速发展,赋予了资管行业新的历史使命,即加快数字化、智能化转型,推动行业的蜕变升级。
大模型技术能够提升资产管理中各环节的自动化效率,提高管理效率,降低人工成本,增强决策支持,改善客户体验,在投资研究、风险管理、合规监控、投资组合优化等方面也有广泛的应用前景。
1.2 基于自研大模型的妙想投研助理整体规划
面对金融行业对AI技术的高标准要求,东方财富确立了“专业数据+业务场景”双轮驱动的建设路径。基于二十余年金融科技领域积累,公司依托海量结构化金融数据与非结构化金融语料构建数据壁垒,覆盖超50万证券标的、280万数据指标及万亿级金融文本资源,形成国内领先的金融数据资产池。
在技术路线选择上,公司坚持自主创新与生态共建相结合。针对金融领域对准确性、时效性、合规性的严苛要求,自主研发金融大模型,突破通用大模型在专业场景下的能力边界。通过构建“检索增强+思维链推理+多信源反思”的技术框架,有效解决模型幻觉问题,实现金融级精准输出。同时,积极引入智能体(Agent)技术,赋予大模型环境感知、任务规划与自主执行能力,推动AI从辅助工具向业务协同主体演进。
二、总体方案
图 1 妙想投研助理服务框架
2.1 算力储备
妙想采用混合云布局,自建机房算力、云端算力等充分满足算力的高可靠要求。集群配套可伸缩分布式调度系统,配合高速大存储,实现了自动故障检测与应对,报警和训练机器高速切换功能,能够支撑起模型的快速迭代优化。
训练和推理全部容器化,推理算力实现实例层面的动态扩缩容,可以实现分钟级大模型推理算力扩缩容,灵活组合几十亿到上干亿参数规模不等的大、小模型族群,面向应用场景选择最佳的模型。
此外,自研金融大模型可以同时适配英伟达、华为等厂家的多种算力,支持多元算力下大规模的任务调度和并行计算。
2.2 数据构建
妙想投研助理拥有品类完整、高质量的金融数据库,同时股吧、财富号等平台优质内容数据持续涌现,进一步丰富了东方财富独家特色数据集,且每月以数千亿token的速度稳定增长。截止目前,妙想已覆盖超过2亿资讯舆情,4亿宏观数据、6亿行业数据、10亿企业数据、上百亿市场数据,以及上百亿的股吧、财富号等独家内容,涵盖上万种数据品类,并通过算法识别结合人工校验等方式从根本上保证数据的准确性、即时性、可靠性。此外,依托于东方财富二十余年金融领域的业务深耕,将一线专业金融从业专家经验深度融入数据加工及应用过程中,为金融专属任务性能优化提供了优质数据资产。
2.3 模型训练
东方财富自研金融大模型训练基于Megatron 框架提供的数据并行、向量并行、流水线并行、序列并行等技术实现了在千卡以上集群上的稳定运行。模型结构整体采用decoder-only的transformer结构,在此基础上适配了基于RMSNorm的pre-norml结构,在FFN层中适配了SwiGLU的激活函数,为了加快推理的速度采用了GQA(GroupedQuery Attention)的注意力结构。
在指令微调阶段,为了提升训练效率,使用了concat_mask技术重置attention_mask和postion_id分隔单轮不相关的对话,同时使得多轮内容连续而关联不影响。多条语料尽量拼满最大长度,提升训练效率4-5倍。采用拒绝采样和多轮迭代技术推动提升训练语料的多样性、复杂度、回答质量从而提升模型的能力。采用强化学习增强模型的推理能力,妙想部分专项模型输出形式和内容都可以用规则校验,天然适配规则奖励方法,模型的能力有较大提升。
2.4 模型能力拓展
除金融文本生成与理解能力外,妙想还通过持续扩展训练得到多个专项模型,结合CLIP预训练模块和Adapter模块,采用分阶段训练的方式实现了针对图文理解及生成的能力,该能力在金融图表解读、信息提取上有较大优势;通过对多节点的COT链路充分探索和评估,选取最优的结果,采用PPO、GRPO等方式训练,增强了大模型作为金融专业Agent的反思与推理能力,能够实现投研领域的任务分析系、规划和多步骤信息汇总。
2.5 应用服务编排
妙想投研助理以自研框架 miaoxiang-robo 及金融特性为基础,支持灵活自定义服务接口、编排管理、旁路依赖等,帮助用户在投研投资等场景下高效获取信息、敏捷构建专业智能链路。
此编排具有以下特征:转译高性能,流程链路可直接转换成服务端代码并编译执行;使用方便,只需要引入类库后即可在开发层面完成实现build构建;高扩展性,支持BPMN协议,可以轻松扩展以适用不同的业务流程需求;插件完善,对业务流程提供了多种组件,能够在设计时实时验证推演效果方案。
三、场景应用实践
3.1 资管行业创新应用典型场景
1)投资研究
在进行投资研究的过程中,投研人员会面临持续新增的市场信息及持续涌现的行业动态线索。需要花费大量时间完成信息检索、内容筛选、数据整理、核对溯源、有序汇总和制作图表的工作。
以赋能研究所为例,妙想投研助理能够覆盖从研究目标确立、市场信息检索、数据整合与分析,到撰写研究报告的完整投研工作流,帮助研究团队切实提效。
2)资产管理
当前,客户对金融服务的需求呈现明显的多样化和个性化,尤其是在财富管理方面,需要更具洞察力的高效服务。
以自营、资管为例,在固收交易中,由于银行间交易的特殊原因,常面临识别能力、解析能力不足而造成的交易策略系统难以搭建的问题。通过妙想对报价、询价的精准解读能力,实时的交易信息识别与解析得到了充分保障,搭建更完善的场外业务服务提效工具得以实现。
3)客户服务
妙想投研助理可以在投研、投资、投教等领域推动服务升级,持续拓展技术内核和服务边界,引领AI时代智能投研趋势。
一方面通过大模型的总结分析能力,可以更快识别市场风向与热点趋势,服务经理能为客户提供更高效的服务;另一方面妙想能够实现专业内容的自动化生产,提供符合需求的市场分析报告,向服务经理提供精细化的用户与产品标签,提升服务的个性化水平和效率。
3.2 大模型在投研实际业务中的应用
图 2 妙想投研助理应用场景
【AI研究员】
AI研究员聚焦投研场景核心痛点,以AI驱动研究效率革新,通过AI实现“全市场扫描+快速响应”,支持投研人员从重复劳动中释放精力,专注策略分析与决策。当前三大新功能:
1)个股/行业跟踪:实时聚合行情、新闻、公告、研报等碎片化信息,自动生成结构化动态跟踪报告,解决人工整理不及时、覆盖不全的问题,帮助投研人员系统性掌握市场变化,降低信息遗漏风险。
2)业绩点评:可在公司发布定期报告后快速生成妙想业绩点评,覆盖全量A股,结合财报指标、业绩电话会议、券商研报观点等信息自动输出关键指标分析、业务亮点、盈利预测与估值等信息。解决人工撰写业绩点评覆盖范围窄、响应滞后的痛点,确保投研人员第一时间掌握全市场动态,抢占分析先机。
3)首次覆盖:基于多维数据(基本面、行业趋势、竞争格局等),生成专业全面的股票研究深度报告,帮助投资者评估股票情况、辅助挖掘潜在投资机会。
【深度研究】
深度研究功能突破传统问答模式,专为专业投研场景设计,面向专业用户的复杂研究需求,支持多层级意图拆解与结构化分析。系统可自动拆解为多个关联子问题,通过思维导图直观展示逻辑链路与节点关系。用户可自由展开/收起分支节点,支持逐层查看节点详情或一键获取完整结论,同时支持关联数据、研报原文等证据溯源。通过融合数据、资讯、研报等多源信息,提供结构化分析框架与深度洞察,答案深度穿透产业链、政策、财务等多维度信息,满足机构用户对分析严谨性、逻辑完整性的高阶要求。
【微信会议助理】
微信会议助理革新传统会议参与模式,用户仅需将腾讯会议链接、会议密码或会议海报发送至妙想,即可由AI代参会并全程录制,会后自动生成会议纪要。支持同时参加多个会议,在会议高峰期也不错过任何一场会议,做用户的全天候智能会议管家。会议纪要包含完整会议内容和智能总结的核心要点,助力用户快速掌握会议要点。
四、总结展望
数字化转型已经成为资管行业蜕变升级的关键,资管机构要以金融科技为核心,实现智能化、一体化。东方财富妙想投研助理是前沿AI科技与专业金融场景融合的典型案例,展示了大数据和人工智能如何深度赋能资管领域。
未来,随着资本市场的不断发展和监管环境的日趋严格,资管领域的数智化发展将面临更多挑战。妙想将始终追求技术先进性和业务可持续性,着眼于端到端解决方案,持续发挥东方财富体系的生态协同优势,为行业提供安全合规、专业可信、品质卓越的模型能力服务。也期待与更多同业携手合作,持续推出更多尖端技术与创新产品,在新质生产力的引领下共同推动行业的智能化转型。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓