近日,阿里发布了第三代通义千问系列大语言模型,以其突破性的混合推理架构和多模态能力成为当前全球最强的开源模型之一。qwen3 模型已上架到 Ollama,个人用户可以下载模型,在本地电脑体验 qwen3 模型。 本文是 Ollama 系列的第 12 篇文章。本文主要内容:
-
qwen3 模型介绍。
-
在 Ollama 上运行 qwen3 模型,切换思考模式与非思考模式。
qwen3 模型介绍
Qwen3是通义千问大模型系列的最新一代产品,包含密集参数和混合专家(MoE)模型的全套阵容。旗舰模型Qwen3-235B-A22B在编程、数学、通用能力等基准评测中展现出与DeepSeek-R1、o1、o3-mini、Grokk-3、Gemini-2.5-Pro等顶尖模型相匹敌的竞争力。小型MoE模型Qwen3-30B-A3B以仅1/10的激活参数量即超越QwQ-32B的性能,甚至微型模型Qwen3-4B也能达到与Qwen2.5-72B-Instruct相当的水平。
-
🔁 创新性支持在单一模型中无缝切换思考模式(适用于复杂逻辑推理、数学及编程场景)与非思考模式(适用于高效通用对话),确保多场景下的最优性能表现。
-
🧠 推理能力显著增强,在思考模式下数学、代码生成和常识逻辑推理能力超越前代QwQ模型,在非思考模式下亦全面优于Qwen2.5 instruct系列模型。
-
🤝 强化人类偏好对齐机制,在创意写作、角色扮演、多轮对话和指令遵循方面表现卓越,提供更自然流畅、引人入胜的沉浸式对话体验。
-
🤖 深度强化智能体能力,支持思考与非思考模式下的外部工具精准调用,在复杂智能体任务中保持开源模型的领先地位。
-
🌐 全面支持100+种语言及方言,在多语言指令遵循和翻译任务中展现出强大的跨语言处理能力。
qwen3 的性能表现:
在 Ollama 上运行 qwen3 模型
Ollama 的安装步骤,可见大模型本地部署开源框架 Ollama 介绍。
Ollama 上的 qwen3 主页:https://ollama.com/library/qwen3
在终端运行命令:ollama pull qwen3:8b,下载 qwen3:8b 模型。
模型下载完成后,运行命令:ollama run qwen3:8b,运行模型。
思考模式与非思考模式的切换:在 Ollama 上部署 qwen3,默认启用思考模式,模型在回答前会生成内部推理内容(以<think> ... 标识)。若要切换至非思考模式,可以在用户提问后加上 /no_think,即可切换至非思考模式。提问加上 /no_think 标识后,在当前会话,后续的提问都会切换至非思考模式。若要切换回思考模式,需在提问后加上 /think。
用户提问示例:
-
“请证明勾股定理”,模型默认在思考模式下进行回答。
-
“你是谁?/no_think”,将模型切换至非思考模式下进行回答。
-
“天空为什么是蓝的?/think”,将模型切换至思考模式下进行回答。
模型的回答响应:
PS C:\Users\chenzhiyuan> ollama run qwen3:8b
>>> 请证明勾股定理
<think>
嗯,用户让我证明勾股定理。首先,我得回想一下勾股定理的内容,就是直角三角形中,斜边的平方等于两条直角边的平方和,也就
是a² + b² = c²。对吧?不过用户可能希望看到不同的证明方法,可能需要选择一个比较经典或者容易理解的。
首先,我得确定用户的需求是什么。他们可能是学生在做作业,或者对数学感兴趣的人想了解证明过程。不管怎样,我需要提供一个
清晰、逻辑严谨的证明过程,可能还要解释每个步骤的意义。
常见的证明方法有很多种,比如欧几里得的几何证明,或者利用相似三角形、面积法,甚至代数方法。比如,最经典的可能是欧几里
得的拼图法,或者用面积相等来证明。或者用相似三角形的性质,比如在直角三角形中作高,分成两个小三角形,然后利用相似性来
推导。
让我先考虑欧几里得的证明方法。这个方法可能比较直观,使用了面积的计算。比如,构造一个正方形,边长为a + b,然后在内部
画出四个直角三角形,每个边长为a和b,然后剩下的部分形成一个更小的正方形,通过面积比较来证明。
不过可能需要更详细的步骤。比如,假设有一个直角三角形ABC,直角在C,斜边AB为c,另外两边AC和BC为a和b。然后构造一个正方
形,边长为a + b,内部包含四个这样的三角形,然后剩下的部分是边长为c的正方形,或者其他的形状?
或者,另一种方法是利用相似三角形。比如,在直角三角形中,从直角顶点作斜边的高,将原三角形分成两个小三角形,这两个小三
角形与原三角形相似。这样可以得到比例关系,进而导出a² + b² = c²。
比如,设原三角形ABC,直角在C,作高CD到斜边AB,分成两个小三角形ACD和CBD。因为两个小三角形和原三角形都是直角三角形,且
角C对应角A和角B,所以它们相似。因此,可以得到比例关系,比如AC² = AD * AB,BC² = DB * AB,然后相加得到AC² + BC²
= AD * AB + DB * AB = AB * (AD + DB) = AB * AB = AB²,也就是c²,所以a² + b² = c²。
不过可能需要更详细的推导,确保每一步都正确。或者用代数方法,比如通过坐标系,设直角三角形的三个顶点坐标为(0,0)、
(a,0)、(0,b),那么斜边的长度是√(a² + b²),所以平方后就是a² + b²,等于c²。不过这个可能更简单,但可能用户希望的
是几何证明,而不是坐标系。
或者用面积法,比如构造两个相同的直角三角形,拼成一个正方形,然后计算面积。比如,将两个直角三角形和一个正方形组合,形
成一个更大的正方形,然后比较面积。
比如,构造一个边长为a + b的正方形,内部放置四个直角三角形,每个直角三角形的两条直角边为a和b,斜边为c。然后剩下的中间
部分是一个边长为c的正方形。那么整个大正方形的面积是(a + b)²,而四个三角形的面积总和是4*(1/2 *a*b) = 2ab,中间的正方
形面积是c²。因此,(a + b)² = 2ab + c²,展开左边得到a² + 2ab + b² = 2ab + c²,两边减去2ab,得到a² + b² = c²
。这个证明方法比较直观,可能用户更容易理解。
不过需要确认这个构造是否正确,比如中间的图形是否真的是一个正方形。比如,当把四个直角三角形放在大正方形的四个角落时,
中间的区域是否真的是边长为c的正方形?可能需要更仔细的分析。比如,每个直角三角形的斜边是c,而当四个三角形拼在一起时,
中间的区域的边长确实是c,所以面积是c²。
所以,这个方法应该可行。不过用户可能需要更详细的步骤,或者不同的方法。比如,另一种方法是利用相似三角形,或者欧几里得
的方法。
或者,用代数方法,比如利用向量或坐标系。不过可能对于初学者来说,几何方法更直观。
现在,我需要决定用哪种方法来展示。可能选择面积法,因为它比较直观,容易理解,而且步骤清晰。不过需要确保每一步都正确,
比如面积的计算是否正确。
另外,可能需要考虑用户是否有数学基础,是否需要更详细的解释,比如为什么中间的区域是正方形,或者如何推导面积的关系。
总之,我需要选择一个清晰、逻辑严谨的证明方法,并详细解释每个步骤,确保用户能够理解。可能还需要指出不同的证明方法,但
先给出一个主要的。
</think>
勾股定理是几何学中的基本定理,其内容为:在直角三角形中,斜边(即对着直角的边)的平方等于另外两条直角边的平方和。即:
**若直角三角形的两条直角边长度为 $ a $ 和 $ b $,斜边长度为 $ c $,则有 $ a^2 + b^2 = c^2 $**。
以下是通过**面积法**的经典证明方法:
---
### **证明方法:面积法**
1. **构造图形**
- 以直角边 $ a $ 和 $ b $ 为边,构造一个边长为 $ a + b $ 的正方形。
- 在正方形内部放置四个全等的直角三角形,每个三角形的两条直角边分别为 $ a $ 和 $ b $,斜边为 $ c $。
- 这四个三角形的排列方式使得它们的斜边围成一个边长为 $ c $ 的正方形(位于正方形中心)。
2. **计算总面积**
- **大正方形的面积**:边长为 $ a + b $,面积为 $ (a + b)^2 $。
- **四个三角形的面积**:每个三角形的面积为 $ \frac{1}{2}ab $,四个三角形的总面积为 $ 4 \times \frac{1}{2}ab =
2ab $。
- **中间小正方形的面积**:边长为 $ c $,面积为 $ c^2 $。
3. **建立等式**
- 大正方形的面积等于四个三角形面积加上中间小正方形的面积:
$$
(a + b)^2 = 2ab + c^2
$$
- 展开左边:
$$
a^2 + 2ab + b^2 = 2ab + c^2
$$
- 两边同时减去 $ 2ab $:
$$
a^2 + b^2 = c^2
$$
---
### **结论**
通过面积法,我们证明了直角三角形的斜边平方等于两条直角边的平方和,即 **勾股定理** 成立。
---
### **其他常见证明方法**
1. **相似三角形法**:
在直角三角形中作斜边的高,利用相似三角形的性质推导比例关系,最终得到 $ a^2 + b^2 = c^2 $。
2. **代数法(坐标系)**:
将直角三角形置于坐标系中,利用两点间距离公式推导斜边长度,直接得到 $ c = \sqrt{a^2 + b^2} $。
3. **欧几里得几何法**:
通过构造图形并利用全等三角形和面积相等的性质完成证明。
---
**关键点**:
- 面积法通过直观的图形分解和代数运算,清晰展示了勾股定理的几何意义。
- 不同方法的核心思想均围绕**面积关系**或**几何构造**展开,体现了数学的严谨性与美感。
>>> 你是谁?/no_think
<think>
</think>
我是一个人工智能助手,我的名字是通义千问。我是阿里巴巴集团旗下的通义实验室自主研发的超大规模语言模型,能够进行多轮对
话、理解复杂指令、生成文本、回答问题、创作故事、写代码等任务。我旨在为用户提供高效、准确、友好的帮助。
>>> 天空为什么是蓝的?/think
<think>
嗯,用户问为什么天空是蓝色的。这个问题看起来简单,但其实涉及物理学和大气科学的知识。我需要先回忆一下相关的知识。记得
天空的颜色主要是由于瑞利散射,也就是光线在大气中散射的现象。不过,可能用户对这个概念不太熟悉,所以需要解释得更通俗一
些。
首先,太阳光是白光,由多种颜色的光组成,每种颜色有不同的波长。当太阳光穿过地球的大气层时,会与空气中的分子和微小颗粒
发生相互作用。瑞利散射的原理是波长越短的光,散射越强。蓝色和紫色的光波长较短,所以它们会被散射到各个方向,而红色和橙
色的光波长较长,散射较少,因此更容易穿透大气层到达地面。
不过,人眼对蓝色的敏感度比紫色高,而太阳光中蓝色光的强度也比紫色高,所以看起来天空是蓝色的。而日出或日落时,光线需要
穿过更厚的大气层,蓝光被散射得更多,剩下的红光和橙光更容易到达我们的眼睛,所以天空呈现红色或橙色。
可能用户还想知道为什么不是其他颜色,比如绿色或黄色。这时候需要解释不同波长的光散射程度不同,以及人眼的感知差异。另外
,可能需要提到一些特殊情况,比如在高海拔地区或太空中的天空颜色变化,比如宇航员看到的黑色天空,因为大气层较薄,散射效
应减弱。
还要注意避免使用过于专业的术语,保持解释的易懂性。比如用“瑞利散射”这个词可能需要稍微解释,或者用更简单的比喻,比如
“光在空气中碰到分子时,短波长的光更容易被分散到各个方向”。
另外,用户可能对这个问题有更深层的兴趣,比如为什么天空在不同时间颜色不同,或者为什么有时候天空是灰色的。这时候可以简
要提到其他因素,比如大气中的水蒸气、尘埃等颗粒物的散射作用,导致不同天气条件下天空颜色的变化。
总结一下,回答的结构应该是:先介绍太阳光的组成,然后解释瑞利散射,接着说明为什么人眼看到的是蓝色,最后提到日出日落时
的颜色变化和其他影响因素。这样既全面又清晰,帮助用户理解天空颜色的成因。
</think>
天空呈现蓝色是由于**瑞利散射**(Rayleigh Scattering)现象。以下是详细解释:
---
### **1. 太阳光的组成**
太阳光是**白光**,由多种颜色的光组成,每种颜色对应不同的波长:
- **可见光**的波长范围约为 **400 nm(紫色)至700 nm(红色)**。
- 蓝色和紫色光的波长较短(约450-495 nm),红色和橙色光的波长较长(约620-750 nm)。
---
### **2. 瑞利散射的原理**
当太阳光穿过地球大气层时,会与空气中的**分子**(如氮气、氧气)和微小颗粒发生相互作用。这种散射现象称为**瑞利散射**,
其核心规律是:
- **波长越短的光,散射越强**。
- 蓝色和紫色光的波长较短,因此它们被散射到各个方向的强度远高于红色和橙色光。
---
### **3. 为什么天空是蓝色?**
- **散射的光进入人眼**:蓝色和紫色光被散射后,会向各个方向传播,进入人眼的视觉系统。
- **人眼对蓝色更敏感**:虽然紫色光的散射更强,但太阳光中蓝色光的强度比紫色高,且人眼对蓝色的感知更敏感。
- **紫色光被部分吸收**:大气中的臭氧等物质会吸收部分紫色光,进一步减少了紫色光的可见性。
因此,我们看到的天空是**蓝色**,而不是紫色。
---
### **4. 日出/日落时的红色或橙色**
- **光线穿过更厚的大气层**:日出和日落时,太阳光需要穿过更厚的大气层,蓝光被散射得更多,几乎消失。
- **剩余的红光和橙光**:波长较长的红光和橙光散射较弱,能穿透更远的距离,因此主导了天空的颜色。
---
### **5. 其他影响因素**
- **大气中的颗粒物**:灰尘、水蒸气等颗粒物会引发**米氏散射**(Mie Scattering),导致天空呈现灰白色或黄色。
- **高海拔或太空**:在高海拔地区或太空中,大气稀薄,散射效应减弱,天空可能呈现黑色或深蓝色。
---
### **总结**
天空的蓝色是**瑞利散射**和**人眼感知**共同作用的结果。短波长的蓝光被散射到各个方向,而人眼对蓝色更敏感,因此我们看到
的是蓝色的天空。
欢迎关注我,后续介绍更多关于 Ollama+qwen3 的应用场景。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】