2025年大模型转行秘籍:关键方向与新手误区全解析,非常详细,助你成功转型!

在这个数据驱动的时代,大模型作为人工智能领域的核心技术,正引领着一场深刻的行业变革。

对于众多有志于投身AI领域的新人来说,转行至大模型开发和应用无疑是一个充满挑战与机遇的选择。以下是为大模型新人量身定制的转行指南,旨在帮助你了解大模型的不同方向、能力要求、常见误区,以及如何顺利踏入这一领域的最佳路径。

在这里插入图片描述

一、大模型的主要方向及能力要求
1、自然语言处理(NLP):
  • 能力要求:熟悉语言学知识,掌握Python编程,了解机器学习基本算法,具备一定的数学基础。
  • 岗位匹配:NLP算法工程师、文本分析工程师、聊天机器人开发等。
2、计算机视觉:
  • 能力要求:掌握图像处理基本知识,熟悉深度学习框架,具备一定的编程能力。
  • 岗位匹配:图像识别工程师、视频分析工程师、自动驾驶算法工程师等。
3、语音识别与合成:
  • 能力要求:了解声学基础知识,掌握语音信号处理技术,熟悉相关编程语言。
  • 岗位匹配:语音识别工程师、语音合成工程师、语音助手开发等。
4、推荐系统:
  • 能力要求:熟悉机器学习算法,掌握数据处理和分析技巧,了解用户行为分析。
  • 岗位匹配:推荐算法工程师、用户画像工程师等。
5、科学研究:
  • 能力要求:具备较强的理论基础,熟悉科研流程,掌握数据分析技能。
  • 岗位匹配:科研工程师、数据分析工程师等。

在这里插入图片描述
在这里插入图片描述

二、新手转行大模型常踩的坑和常见误区

转行大模型的过程中,新手往往会遇到一些难以避免的陷阱和误区。以下是一些具体的注意事项,帮助你在转行路上少走弯路。

1、过度依赖理论学习,忽视实践操作
  • 误区:认为只要掌握了理论知识,就能自然而然地应用到实际工作中。
  • 建议:理论固然重要,但大模型领域更注重实践经验。应该通过参与项目、动手实验来巩固和深化理论知识。
2、追求热门方向,忽视个人兴趣和优势
  • 误区:盲目跟随市场热门方向,如深度学习、NLP,而不考虑自己是否真正感兴趣或适合。
  • 建议:选择方向时,结合个人兴趣和优势,这样更容易在特定领域深耕并取得成就。
3、忽视基础知识和技能的打磨
  • 误区:急于学习高级技能,而忽略了数学、统计学、编程基础等核心知识。
  • 建议:大模型建立在坚实的基础知识之上,务必先打好基础,再追求高级技能。
4、不重视代码质量和技术文档
  • 误区:认为只要模型跑通了,代码写得好不好无所谓。
  • 建议:良好的代码习惯和技术文档是团队合作和后续维护的基础,应予以重视。
5、缺乏持续学习的动力
  • 误区:认为通过短期培训或自学就能掌握所有必要知识。
  • 建议:大模型技术更新迅速,需要持续学习和跟进最新的研究成果。
6、忽视跨学科知识的重要性
  • 误区:只关注技术本身,忽视了与其他领域如心理学、社会学等的交叉应用。
  • 建议:跨学科知识可以帮助你更好地理解模型的应用场景,提升创新能力。
7、求职时定位不准确
  • 误区:期望过高或过低,导致求职过程中屡屡受挫。
  • 建议:准确评估自己的能力和市场需求,合理定位求职目标。
8、忽视人际网络的建设
  • 误区:认为技术能力是唯一的敲门砖,不需要建立行业联系。
  • 建议:人脉资源在职业发展中同样重要,应积极参加行业活动,拓展人际网络。

通过避免这些常见的坑和误区,新手可以更加稳健地迈入大模型领域,为自己的职业生涯打下坚实的基础。

三、入行大模型最顺滑的路径
  • 学习基础知识:首先,打好数学、编程、数据结构等基础。
  • 掌握相关技能:学习机器学习、深度学习等知识,掌握至少一种深度学习框架。
  • 项目实践:参与实际项目,锻炼自己的动手能力,积累经验。
  • 拓展人脉:参加行业活动,结识业内人士,了解行业动态。
  • 持续学习:关注大模型领域的新技术、新算法,不断提升自己。
  • 求职准备:完善简历,准备好面试,争取获得心仪的岗位。

转行大模型并非一蹴而就,但只要脚踏实地,一步一个脚印,你一定能在这个领域找到属于自己的位置。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值