做AI产品两年,我得出的实操经验

前段时间我去 QCon 北京全球软件大会分享了一个专题:

AI 时代的新范式:如何构建 AI 产品?

观众反响特别好,想着要不把分享的内容公开出来,所以整理了这篇文章。本篇内容是对我过去两年时间,做了无数个 AI 产品 demo 的一个阶段性的总结,主要聚焦这三个方面的经验:

为什么 AI 产品这么难做?

提示词工程被极大低估

AI 产品团队如何构建

图片

图片

谨小认知,仅供参考。写给所有 AI 路上的朋友们。

简单自我介绍,我是 ONE2X AI 全栈工程师,AI 视频剪辑效果负责人。负责 ONE2X 的 Medeo(AI 视频剪辑工具)的视频自动化制作工作流全流程搭建、工具产品的设计及创新 AI 应用场景探索。

22 年 11 月 GPT 刚出后,就开始尝试做各种各样的 AI 产品,23 年年中毕设做的是 AI 情感陪伴、暑假在做企业知识库 Chatbot 智能客服、23 年年底到 24 年年中在大厂做低代码编排 AI 工具和智能医疗、24 年年中到现在在 AI 创业工作做 AI 自动剪辑。途中还做过大大小小的 project,包括 AI 写遗嘱、AI Agent 做动画等等……也算是积累了很多实操经验了。

图片

为什么 AI 产品这么难做?

让我们轻松的聊聊 AI 与产品

图片

认知截止到 20250411

A Joke:先从一个笑话开始,你能看懂吗?

图片

如果你知道每一条背后的原因,那么恭喜你上道了!

这份《AI产品经理学习资料包》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

资料包: 完整版本链接获取

👉[CSDN大礼包🎁:AI产品经理学习资料包》免费分享(安全链接,放心点击)]👈

所以为什么 AI 产品这么难做?

AI 时代的产品和传统的产品不一样的是什么?

图片

图片

图片

基础流程是什么?

所有流程可枚举全部已知

图片

流程的自动化的定义是什么,什么流程可以被 SOP 化,就可以做成产品。那 AI 产品,首先肯定是产品,其次它还会完成以前人类才能完成的某种任务。这个任务如果需要 AI 完成,那就发生了范式转移

图片

图片

你得帮用户做出来这个任务。

图片

举个例子,Cursor

图片

Cursor 是我认为 2024 年最好的 AI 产品

它解决了三端关系。

图片

图片

图片

图片

Cursor Team 解决了如下问题:

  • 任务分级:根据给 AI 的执行权限不同的不同可控颗粒度的任务
  • 帮用户完成了任务:每个任务 / 功能在用户还没来之前就已知该任务如何完成(Coding,且无论语言,无论项目)
  • 交互方式:每个任务 / 功能与人协同的人机交互方式

图片

提示词工程被极大低估

认知一:Prompt 也是代码,所以要测试。

图片

尊重 prompt,同代码享受同等权利,需要 git diff

需要对 prompt 单独进行版本管理

Prompt 也是代码,但有区别?

图片

LLM 和函数很类似,它们都是实现某个“计算”的节点。

但它能提供比传统函数能做的更多的事情,提供“智慧类型”计算。

它可以接受非结构化的数据,经过推理,输出非结构化 / 结构化的数据。

Prompt 也是代码,如何测试……?

图片

函数,我们在运行前,通过 IDE 或者单测即可完成功能正确性校验

LLM 怎么测试呢?

图片

如果你只是让它完成传统函数的任务,也很好测试,可以使用 function call 加上单测。

比如加法任务,只让它输出结果,可以做正确性校验

但大概率你让 LLM 做的事情是非结构化的。

图片

所以 Prompt 的好坏怎么测?

一、格式正确性

使用 function call / Json mode 确保输出格式不出错

任何 LLM 相关的调用,都使用 pydantic 严格校验

图片

二、功能 Baseline

输出内容,通过 batch evaluation 进行校验。

图片

三、人工评测结果

图片

模型的上限,还是取决于人对于结果的要求有多高。

Baseline 只是保证功能正常运行,上限在于“人”

四、放权

模型可能比你想象中的更强,不要限制它的思考方向,思考内容,knowhow,把 prompt 当成一种容器,你只是为模型提供必要的信息,而不是教它如何思考。

总结一下,Prompt 也是代码,所以要测试。

图片

认知二:AI 产品就是基于

“给模型提供上下文”出发开始的

首先,不要发现模型做不对任务,就觉得它有问题。接下来以 Text2SQL 为例。

图片

做产品的人需要知道这个任务完成本身需要什么上下文,并且努力为模型提供出来。你并不需要那么多 Prompt 技巧,而是努力为模型提供更多的“必要信息”。

图片

你会发现跟人很像。把它当成实习生,你也需要给实习生上下文。

图片

对于大部分业务场景而言,你不需要“神级 Prompt”(如下图),你需要的是对业务的熟悉程度。把业务 knowhow 沉淀成 Prompt。

图片

一件事情上下文到底是啥?寻找 root 变量的过程。

图片

认知三:如何面向未来进行设计,

避免被模型更新所冲击?

图片

Manus 画的 AI Model Timeline

模型每天都在更新,我怎么设计提示词和架构?

模型更新之后,提示词会不会失效了呢?

每个模型有什么不同的脾性?

模型越来越智能,未来还需要复杂的提示词吗?

……

Slow Down,别焦虑。

打不过就加入:用最好的模型的 API 创建应用。除非自己顺手能训练模型。

Flow Engineer:什么时候拆分任务,什么时候合并任务?

图片

我的体感(纯经验,没有数据支撑,knowledge 截至 20250321)

如果不知道用啥,就先试试 Claude

通用类型任务:Claude-3.5-Sonnet / Claude-3.7-Sonnet

强推理任务:Claude / Gemini 2.5 Pro

中文语言任务:DeepSeek

图片多模态任务:Claude / Gemini / 阶跃

视频多模态任务:Gemini

简单任务:Gemini Flash (省钱)

中文 B 端本地任务:Qwen

可能的 Bad Case:

DeepSeek 指令遵循弱

Gemini flash 幻觉严重

……

图片

当然 GPT4o 生图很好!

Flow Engineer

“Flow Engineering” 是一个最近越来越受欢迎的术语。它第一次被提及作为术语是在 CodiumAI 关于 AlphaCodium 的论文中,他们在论文中使用流工程来产生关于编码问题的最新结果。

推荐看一遍 Langgraph 的 ipynb examples

图片

Flow 强调的是用整体系统设计去完成任务

多节点设计,每个节点去实现单一任务。

单一任务简单可靠,一定在 LLM 可实现范围之内。

当一个任务太难的时候,就拆成两个任务去做。

图片

好像有点像 Dify/Coze 的意思?

对,但不全对。不要忘了传统代码的能效。

图片

你并不需要全部节点都是 LLM,你也可以组合 function 和 LLM。

所以推荐使用 Dify/Coze 验证原型,写代码用 LangGraph 搭建实际应用。

当模型更新后,就合并任务。

在设计 Flow 的时候,不需要拘泥于优化一个节点的 LLM Prompt。

因为模型推理能力不够,大概率三个月后就够了。不需要过度设计。

用几个小的 task 拆解后完成任务,等模型更新后把整个大任务交给新的模型。

图片

总结一下,Prompt Engineer 的认知

AI 产品团队如何构建

认知一,首先你得成为“创作者”

Cursor 很厉害,也最先落地:

懂 AI 的本来就是程序员。团队懂 Coding。

团队知道如何拆解任务,每一个任务如何写 Prompt 的 knowhow,团队很清楚。

模型 Coding 能力已经阶跃(Claude3.5) 文本模态 Coding 任务是最擅长的。但还有如此多的业务场景,等着创造

图片

认知二,快速做出 Demo 最重要

AI 产品最后长成什么样子,已经是无人定义清楚的事情了。

只有当把所有的要素及其,做出一个 demo,你才知道这是什么感觉的产品。

图片

我做的大大小小的 demo

认知三,产品 / 开发的界限模糊

以前的开发模式,是产品、研发。现在可能变成了一个紧密的团队一起调 prompt。

图片

图片

这是我在公司内部做的后台,支持任何人追溯每次 LLM 调用,并且重新调试 prompt。

图片

最好是产品 / 全栈能自己调试 prompt。

AI 产品需要紧密配合的团队,一起设计架构。

Prompt 需要沟通能力,业务能力。代码需要研发能力。

Prompt + 代码是团队之间才能做的事情。

一起创作。

写在最后

我们正在见证新范式的出现,很幸运。

图片

有了 AI,才有了年轻人的机会,所以我非常感激能在这个时代能有这么多有意思的事情。

AI产品经理,0基础小白入门指南

作为一个零基础小白,如何做到真正的入局AI产品?

什么才叫真正的入局?

是否懂 AI、是否懂产品经理,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。

你是否遇到这些问题:

1、传统产品经理

  • 不懂Al无法对AI产品做出判断,和技术沟通丧失话语权
  • 不了解 AI产品经理的工作流程、重点

2、互联网业务负责人/运营

  • 对AI焦虑,又不知道怎么落地到业务中想做定制化AI产品并落地创收缺乏实战指导

3、大学生/小白

  • 就业难,不懂技术不知如何从事AI产品经理想要进入AI赛道,缺乏职业发展规划,感觉遥不可及

为了帮助开发者打破壁垒,快速了解AI产品经理核心技术原理,学习相关AI产品经理,及大模型技术。从原理出发真正入局AI产品经理

这里整理了一些AI产品经理学习资料包给大家

📖AI产品经理经典面试八股文
📖大模型RAG经验面试题
📖大模型LLMS面试宝典
📖大模型典型示范应用案例集99个
📖AI产品经理入门书籍
📖生成式AI商业落地白皮书

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

🔥作为AI产品经理,不仅要懂行业发展方向,也要懂AI技术,可以帮助大家:
✅深入了解大语言模型商业应用,快速掌握AI产品技能
✅掌握AI算法原理与未来趋势,提升多模态AI领域工作能力
✅实战案例与技巧分享,避免产品开发弯路

这份《AI产品经理学习资料包》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

资料包: 完整版本链接获取

👉[CSDN大礼包🎁:AI产品经理学习资料包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值