随着人工智能技术的不断突破和产业需求的快速演进,企业对大模型微调技术的重视程度日益提升。这项技术不仅依托预训练模型在多任务适应性和强大学习能力上的优势,同时也通过对特定领域数据的细致微调,弥补了全模型部署在计算资源和数据规模方面的不足。大模型微调技术在智能客服、金融风控、医疗诊断、法律咨询、内容创作等众多领域展现出巨大的应用潜力,成为推动各行业智能化升级的关键驱动力。
在产业实践大模型微调的过程中,经常面临多重挑战。一是微调数据构建难。 金融、政务、医疗等各领域都面临领域数据量不足的问题,行业数据涉及用户隐私、商业机密等内容,难以获得充足的数据量。在生产过程中,由于微调训练需要应用问答对格式的物料,将常规数据处理成问答对数据比较困难。二是资源成本高。 为了追求更优性能,超参数调优和数据集优化是必要的步骤,然而微调大模型涉及复杂的训练流程和大量的计算资源,每次实验迭代都需要大量的资源消耗。在此过程中,硬件设备的采购与维护成本相对较高。三是行业适配难。 由于不同行业需求多样且变化快速,模型微调不仅需要灵活应对这些变化,还要保证在复杂业务场景下的鲁棒性。这对模型的设计和微调策略提出了很高的要求。
一、微调数据构建
针对微调数据构建难问题,可采用人工与机器相结合的方法构建微调语料库。 目前产业构建微调语料库的主要方法有四种,第一种是人工构建,即领域专家基于业务场景的知识和经验定向生产数据,这种方法生成的数据质量高,但生产成本也相对较高;第二种是人机混合构建,首先利用大模型生成初步数据,再由人工进行筛选、优化和标注,这种方法可以一定程度上兼顾数据的生产效率和质量;第三种是模型生成,利用大模型,通过特定的提示或指令,自动生成大规模数据集,这种方法生产效率高,但数据质量不稳定;第四种是基于传统数据集改写,将传统数据集转换为指令跟随或对话形式,以适配大模型的微调需求,这种方法适配性强,但数据量相对有限。
目前,为提高微调数据集构建效率,降低数据生产成本,产业衍生出dataphin、Label Studio、FlagData 2.0等多种大模型数据处理工具。这些工具能够提供一站式全域数据集成、数据处理、数据管理等能力,帮助企业快速构建微调数据集,提高训练数据质量。
二、规划资源成本
针对资源成本高问题,可综合业务预期、已有数据资源及模型规模等合理规划计算资源需求。 通过英伟达研究发现,可以通过输入数据量、模型参数量和算力规模来预估训练时长:
T–代表输入数据的tokens数量;
P–代表模型参数量;
N–代表所用的GPU数量;
X–代表每个GPU的平均吞吐量。
应用该公式,也可以通过预期训练时长、数据量、模型参数来预估计算资源需求,例如:对于100亿个参数的模型,输入4500亿token量级的数据,训练84天,约需要31个A100GPU。在预估存储需求时,训练内存需要考虑模型权重、优化器所需内存等因素,通过产业调研,总结出如下方法:
三、适配行业场景
针对行业适配难问题,可结合业务需求、资源情况综合选择适合的微调方法。 其中最主要的考量因素包括算力资源的可用性、任务类型、数据集规模、模型的目标精度。当遇到数据量大且任务复杂的场景,尤其是需要高精度地输出特定领域任务时,通常会使用全参数微调方法对大规模数据集进行训练,这种方法能够充分利用预训练模型的通用特征,适用于法律、医疗等专业性较强的领域。然而,全参数微调对算力资源的需求较高,训练成本昂贵,且不适合需要快速迭代的场景。
当资源有限或需要快速适应多个任务时,高效参数微调方法(Parameter-Efficient Fine-Tuning, PEFT)成为更优的选择。这类方法通过仅需训练调整模型少量参数,显著降低了训练时间和成本,同时保留了模型的核心能力。目前产业中常用的高效微调方法包括LoRA(Low-Rank Adaptation)、QLoRA(Quantized LoRA)和Prefix Tuning等。例如,LoRA通过在模型的关键层引入低秩矩阵实现微调,适用于需要在保持模型性能的同时降低资源消耗的场景;QLoRA则进一步结合量化技术,在低精度计算环境下实现高效微调;Prefix Tuning通过优化输入前缀向量,适合小样本场景和任务切换频繁的应用。
随着以DeepSeek为代表的大模型的快速崛起,微调训练技术正在经历新的变革。DeepSeek在微调阶段引入了强化学习(Reinforcement Learning, RL)技术,使模型能够通过自进化适应特定任务需求。其核心创新在于采用GRPO(Group Reward Proximal Optimization)算法,这是一种基于群组采样的强化学习方法,通过对不同任务输出结果集内的相对优劣进行优化,显著提升了模型的泛化能力和任务适配性。此外,DeepSeek还结合了基于规则的奖励系统(Rule-Based Reward, RBR),通过明确的规则定义和奖励信号引导模型行为,减少了对人工反馈的依赖。这种方法不仅提高了训练效率,还增强了模型在复杂场景中的安全性和可靠性。
大模型微调训练是连接预训练模型与下游应用场景的关键环节。目前产业各头部企业均已推出大模型微调工具链产品,通过开发工具链支持更加高效易用的微调训练能力。人工智能产业发展联盟AI Infra工作组高度关注大模型训练微调平台技术发展,联合五十余家单位共同编制了《大模型训练平台技术要求》标准。该标准聚焦大模型平台训练过程的功能、性能要求,结合训练效率、稳定性和易用性等产业需求规范标准,帮助企业提升大模型训练效果,降低大模型训练成本,推动大模型技术更广泛的应用落地。
为进一步促进大模型技术和应用快速发展,助推大模型训练平台落地,并协助应用方选取适配产品,现基于标准提供大模型训练微调平台符合性验证服务。
未来随着技术的不断发展,大模型微调训练将更加高效、智能、通用,为人工智能应用带来更广阔的前景。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~