国内12家主流大模型,谁是地表最强?亲测后发现是它!

大模型GPT-3.5,2022年11月发布。

可谓春风化雨,雨后春笋一般。

到现在2024年,国产大模型工信部注册的,已有几百家。

国产大模型崛起速度之快,令人惊叹。

在如此之多的大模型里面,如何选择好用的,还真是个问题。

结合GPT4o和Claude3.5,加上自身的一定使用,总结了如下12家国产大模型:

下面表格,排名不分先后

各自产品对应的logo如下:

文字版介绍:

1 百度:推出了“文心一言”大模型,具备强大的自然语言处理能力,广泛应用于搜索、对话等领域。

2 阿里巴巴:发布了“通义千问”大模型,支持多种语言理解和生成任务,应用于电商、云计算等场景。

3 腾讯:研发了“混元”大模型,强调多模态融合,应用于社交、游戏等领域。

4 华为:推出了“盘古”大模型,专注于自然语言处理和计算机视觉,应用于云服务和智能设备。

5 科大讯飞:发布了“星火认知”大模型,强调语音识别和自然语言理解,广泛应用于教育和办公领域。

6 商汤科技:推出了“日日新”大模型,专注于计算机视觉和多模态融合,应用于安防和自动驾驶等领域。

7 智谱AI:研发了“GLM-4”大模型,具备强大的语言理解和生成能力,应用于科研和教育领域。

8 字节跳动:推出了“豆包”大模型,应用于内容创作和推荐系统。

9 360公司:发布了“360智脑”大模型,强调安全性和信息检索,应用于搜索和安全领域。

10 昆仑万维:天工AI,双千亿级大语言模型,国内首个AI搜索产品“天工AI搜索”。

11 快手:推出了“可灵AI”大模型,应用于短视频内容创作和推荐。

12 月之暗面科技:研发了“Kimi”大模型,专注于对话式服务和智能助手。


看到这里的老铁,可能会有问题,哪家最强呢?

就要看如何评价一个大模型的能力,有三个最重要的指标。

一般来说,衡量指标有三个:第一:文本生成能力;第二:任务推理能力;第三:通用和泛化能力。

文本生成能力:文本生成能力指模型在自然语言生成中的流畅性、语义相关性和多样性。常用评估方法包括困惑度(Perplexity)、BLEU和ROUGE等指标。

推理能力:推理能力反映模型在逻辑推导、知识应用和因果推理任务中的表现。强推理能力使模型能够理解上下文并完成复杂问题的解答。

泛化能力:泛化能力体现模型在未见过的数据或任务上的适应性。优秀的泛化能力意味着模型能跨领域、跨语言和多模态高效工作。

而数学推理能力又是重中之重,它体现了模型的智力水平,推理能力强,才能应对复杂任务。

而咱们平时的需求,主要也是以复杂任务为主,否则我们也不会使用它们,简单的任务,咱们自己就能做了;重复的任务,咱们写几行代码,就自动化了。

目前openAI的o1推理能力公认最好的,我询问了它,给出数学推理能力前三强:

但是它的知识目前只学习到了2023年10月,所以排名只能参考。

为了进一步客观,我又询问了数学推理能力很强的Claude3.5 ,它的回答如下:

总结来说,智谱GLM-4,文心一言,通义千问,KIMI,是o1和claude3.5给出的答案。

第一轮筛选过后,我再亲测上面上榜四个大模型。

测试方法,选择一个标准数学数据集,就拿GSM8K吧,先找一道典型题目,逐一询问它们。

选择下面这道:

为什么选择这道题目呢,因为GPT-4o这道题目都无法给出准确答案。

如下所示,给出答案8,这是错误的:

这就热闹了,看看国产大模型能否答对。

先提问智谱GLM-4,答案10,回答正确:

再提问文心一言,使用3.5,得到答案是8,回答错误。已开通会员的可以试试文心4回答是否正确:

再提问通义千问2.5,结果10,回答正确:

最后提问KIMI,结果8,回答错误:

经过第二轮一道题测试,发现回答正确的大模型,剩下两个,分别是GLM-4、通义千问。

最后一轮测试,选择一道2024年全国卷高考数学题,找一道我还会的选择题

我做了下,答案是B:

先提问GLM-4,回答B,结果正确:

再提问通义千问,回答A,结果错误:

顺便提问了下GPT-4o,它选了C,又错了:

经过三轮数学测试,就剩 GLM-4。

国产大模型的智力水平,目前已经有超越GPT-4o的趋势,让人惊艳!

期待国产大模型和厂家们再接再厉,不断突破。

备注:要想得出更加客观全面的智力水平,请参考基于不同整个数据集、不同推理水平测试维度的全面评价,本测试限于篇幅,只做初步测试。


零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

当在使用Python与Chrome浏览器进行交互时,遇到 "error decoding response body" 的异常,这通常表示在处理从Chrome返回的数据时,由于某种编码或解析问题,无法正确读取响应的内容。这个问题可能源于以下几个方面: 1. **HTTP头信息不匹配**:检查Chrome返回的Content-Type头,确保它与期望的数据类型(如JSON、XML等)相匹配。如果数据被错误地编码为二进制(如图片),而你试图以文本解析,就会引发这个错误。 2. **字符编码问题**:确认服务器发送的数据是否按照正确的字符编码(比如UTF-8)。如果你的代码没有指定正确的解码器,可能会导致乱码,进而抛出异常。 3. **网络连接或请求错误**:确保网络连接稳定,且请求URL有效。有时候,服务器端的问题也可能导致响应体不能正常解码。 4. **使用的库或模块**:如果你使用了像`requests`这样的库来处理HTTP请求,检查是否正确设置了参数,比如`stream=True`以分块接收大文件,而不是一次性加载整个响应体。 5. **错误处理**:在处理网络请求时,记得加入适当的错误捕获和处理机制,例如使用try/except块,以便在出现此类错误时能更优雅地处理。 要解决这个问题,你可以尝试以下步骤: ```python import requests try: response = requests.get('http://your_url', headers={'Accept-Encoding': 'utf-8'}) # 检查响应状态码 if response.status_code == 200: response.raise_for_status() # 如果状态码不是200,引发请求异常 data = response.json() # 假设是JSON,根据实际数据类型进行相应的解析 else: print(f'Received status code {response.status_code}, unable to decode response') except requests.exceptions.RequestException as e: print(f'Error decoding response body: {e}') ``` 在这里,我们添加了一个异常处理层,如果请求失败或者响应内容无法解码,会捕获并打印错误信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值