😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
前面介绍的是一些具体的模型,今天来介绍构成这些模型的基础。
向量点积是线性代数中的概念,用于衡量两个向量之间的相似度。
AI的背后是数学,将特征向量化、矩阵化就开始进入线性代数的世界了。
通过相似度进行分类,例如,调用openAI的Embedding API计算评论的Embedding,然后计算评论与正面的Embedding的相似度,与负面的Embedding的相似度,从而判断评论是正面还是负面。
在训练过程中,通过让两个向量相似度最大化来更新参数,例如,CLIP中的对比学习。
自注意力机制中的通过计算Query与Key之间的相似度,捕捉序列内部不同位置之间的依赖关系。
矩阵可以是一幅图像、存储关系的图、也可以是一个batch的特征向量。
可以对矩阵提取特征、也可以进行降维分解。
矩阵可以存储像素值、特征值、也可以存储梯度信息。
矩阵可以是静止的图像,也可以是动态的旋转、缩放、平移变换。
ANN中特征和权重的矩阵乘法、CNN中的卷积操作、Transformer中的自注意力和MLP也都是矩阵乘法。
神经网络的前向计算和反向传播都离不开矩阵乘法。
线性层加上激活函数就构成人工神经网络,包含隐藏层的人工神经网络就是多层感知机(MLP),激活函数使得原本线性变换具有复杂的非线性能力,仅有一个隐藏层的MLP可以逼近任意复杂的函数。
MLP多用于表格数据分类。
在目标检测中,CNN用于提取特征,全连接层(FC)用于检测框的分类和位置回归。
将batch个样本组织成矩阵的形式。
在机器学习中,如何计算特征的重要性?可以通过特征工程,例如相关性分析方法去掉对目标不重要的特征,还是让模型自己去学习,训练完成后,权重W中小的参数值对应的特征就是不重要的。
前向计算是通过矩阵和向量乘法实现的,在反向传播更新参数的过程,也是通过计算损失函数对各层参数的偏导数,具体涉及到标量对于矩阵和向量的偏导数,以及利用链式法将误差从输出层反向传播到每一层,更新每一层的权重和偏置。
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
⑤AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。
⑥AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~