对程序员来说,DeepSeek的爆火加速了什么?

DeepSeek之前,国内AI领域最广为人知的产品是Kimi,他的主要增长策略是投流(近一年预计投流花费9亿)。

作为对比,DeepSeek几乎没有营销投入的前提下,从上线起到2月9日,App下载量已超1.1亿次,周活超9700w。

除了数据层面外,社会层面有些趋势正在悄然形成 —— 各类企业、各级政府都热衷于尝试DeepSeek

对程序员来说,DeepSeek的爆火加速了什么?本文会从技术与职业层面聊聊。

技术层面

本质来说,AI的作用是提效

如果按步骤拆解如何完成一件事,会得到一条链。

比如,下图是拆解如何上线一部院线电影

在这里插入图片描述

其中每个步骤又能按同样流程拆解出子步骤,比如审查与许可环节又能做如图拆解:

在这里插入图片描述

拆解出的子步骤同样能递归拆解:
在这里插入图片描述

当我们对所有步骤都执行递归拆解,会得到一个金字塔结构的流程图。

所谓提效,就是AI替代人工完成金字塔结构中的步骤

我们可以按AI能完成多少步骤将AI分为三种工作模式:

  • Chatbox:与AI对话完成单一步骤提效,这是最常见的人类与AI交互方式

  • Workflow:AI为包含多个固定步骤的工作流程提效

  • Agent:AI自主决策完成一个步骤后接下来该怎么做,可以为跨金字塔层级的多个步骤提效

DeepSeek(尤其是推理模型R1)的出现对上述流程有什么影响呢?

最直观的,R1的推理能力提高了Chatbox的输出内容逻辑性。

更深层次的,R1作为推理模型,在Agent中主要作为:

  • 决策推理:判断下一步能做什么,并决定做什么
  • 元提示词:自动生成给大模型使用的提示词

考虑到R1o1更高的性价比,可以得出结论:

R1会加速各场景Agent的落地

比如,24年初第一款Coding Agent Devin就诞生了,但之后一直没开放试用。

24年底开放试用后,也因为:

  1. 每月500刀的高昂订阅费用

  2. 处理复杂业务逻辑时仍需大量人工干预

导致一直没能大规模落地。核心是两个原因:

  1. 外部原因:底层模型的推理能力、调用成本

  2. 内部原因:自身工程化能力还需完善

R1V3的出现很好的解决了第一个问题。

Agent对标的是各类员工的工作流程(比如Devin对标的就是程序员)。

所以,DeepSeek加速了程序员日常业务编码工作被AI取代

职业层面

如果说技术层面DeepSeek的爆火加速了程序员与AI对抗,那职业层面带来的更多是增量。

梁文峰参加民营企业座谈会释放了一个信号 —— 之前的各种政策限制(比如大模型生成随机性造成的内容审核风险)会逐渐松绑。

此后,各类公司、各级政府纷纷上马AI(主要是上马DeepSeek)。

在这里插入图片描述

这会带来继企业、政府数字化转型后,又一波企业、政府AI转型的职业机会。

在传统软件开发领域,技术的边界、产品的边界是明确的。

明确的边界带来了明确的职业分工 —— 前端、后端、产品、测试、运维…

但大模型领域每年都有新模型、工程化技术涌现,不管是技术还是产品的边界都还未达到。

在招聘网站上,对AI产品负责人的职位描述还未形成业界规范。

大量AI转型需求 + 未形成业界规范 = 转型窗口期

程序员在新AI技术跟进上有天然优势,所以未来2年,从程序员转型AI产品负责人会是个好机会

我有个朋友华洛,就是从程序员转型AI产品负责人,他有个很形象的比喻:

当被熊追时,你只需要跑得比身边的人快

意即为了转型AI产品负责人,你不需要是行业AI专家,只需要比公司其他同事更懂AI就行

后记

技术迭代的终点并非取代人类,而是重塑协作模式。

从技术层面看,DeepSeek加速了程序员日常业务被AI取代的进度。

但在职业层面,大量AI转型需求 + 未形成业界规范 = 更大的转型窗口期。

你怎么看?

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值