关于AI Agent的八大核心概念,你知道几个?

一、智能体(Agent

在这里插入图片描述

图片来源:百度

所谓智能体,指的是能独立采取行动以实现特定目标的 AI 实体。

想象你有一个贴心的小跟班,你让他干啥他就干啥。比如你让他查明天的天气,他立马就给你整得明明白白。

举个栗子,AI 面试官就是一个很棒的智能体。

它能够根据招聘要求,自主给候选人发送试邀请,然后自主进行视频面试,再自主进行面试评价,自主发送 offer。最后把招聘的统计报告发送给你。

是不是超省心?

当然了,智能体也存在很多缺陷,特别是在对准确性要求很高的场景,完全自主的智能体还存在明显的幻觉问题。

比如,某大厂发布的 DataAgent,你只需要说一句话,它就能查询数据库并生成高大上的图表。

但是仔细查看它生成的图表,就会发现很多问题,比如数据错误甚至数据编造。

在这种情况下,我们就需要使用 RAG、微调等手段减少智能体的幻觉问题。

二、多智能体系统(Multi-Agent System

在这里插入图片描述

图片来源:百度

多智能体系统,就是把好几个智能体凑一块儿,让他们一起合作干大事。就像一个团队,每个成员各司其职,互相配合。

比如,在智能交通系统里,路口的智能体负责收集车流量和路况信息,然后把这些信息传给控制中心的智能体。控制中心的智能体一分析,就把信号灯的时间调得刚刚好,车流一下子就顺畅了。

相比于单个智能体,多智能体系统的要求就更高了。

比如,如果其中一个智能体死机了,整个智能体系统都会停摆。

要解决这个问题,可以给每个智能体都准备一个“克隆体”,如果一个智能体死机了,“克隆体”马上顶上去。

三、RAGRetrieval-Augmented Generation

在这里插入图片描述

图片来源:百度

RAG的本质就是先从指定的外部知识库中检索相关信息,再利用这些信息生成回答。

由于这些信息本质上来自于企业知识库,而不是 AI 的“自由生成”,因此会更加准确可信。

RAG 就像是给智能体配了个超级知识库。

智能体要是遇到复杂的问题,它就先在这个知识库里快速搜资料。把相关的内容都找出来后,再用自己的语言整理成一篇完整的回答。

举个栗子,智能客服系统里,RAG 就非常重要。

顾客要是问一些复杂的问题,比如产品的详细使用方法,智能客服就用 RAG 快速在知识库里找答案,然后生成一份详细、准确的回答发给顾客。

当然了,RAG 也存在很多难点。

比如知识库的内容必须做好分类、分级,避免相互冲突,同时还必须实时更新,否则“进去的是垃圾,出来的也是垃圾”。

四、工作流(Work Flow

在这里插入图片描述

图片来源:coze

所谓工作流,是一系列相互关联的任务和步骤,按照一定的顺序执行,以完成特定的业务目标。

工作流就好比是一条流水线。把一个复杂任务分解成一个个小步骤,每个步骤由专门的工人(智能体组件)来完成。第一个工人干完了,把结果传给第二个工人,第二个工人接着干,直到最后完成整个任务。这样分工明确,质量和效果都很高。

在准确性要求很高的场景,如果让智能体自行规划任务执行步骤,可能会加重幻觉问题。

在这种情况下,我们就可以通过工作流,来固定智能体执行的步骤,从而减轻幻觉。

举个栗子,在订单处理智能体中,员工录好订单信息后,工作流自动触发库存检查。要是库存够,智能体就直接安排发货;要是不够,智能体就创建补货任务,并通知采购部门。同时,智能体还会给客户发个消息,告诉他预计发货的时间。

当然了,工作流也不是完美的。

要是工作流设计得不合理,比如步骤太多或者顺序不对,任务处理起来就会很慢。因此,需要专业的产品经理来进行梳理。

五、微调(Fine-Tuning

在这里插入图片描述

所谓的微调,可以简单理解为,利用一部分行业或企业数据对大模型进行训练,从而让它更理解行业或企业的特定业务。

比如,行业有大量的专业名词或者“行业黑话”,标准大模型无法理解这些名词,自然就不可能给出准确的答复。那么,基于标准大模型的智能体,肯定也就无法准确的完成业务。

在这种情况下,我们就可以通过微调,来改善智能体对行业的理解。

举个栗子,通用的质量检测模型在处理企业的特定产品数据时,检测准确率较低。

于是,企业收集了大量生产线上的产品图像数据,包括合格品和次品,并对这些数据进行了标注。然后,企业使用这些数据对质量检测模型进行微调,结果提升了 25% 的检测准确率。

当然了,微调也不是完美的,比如对数据依赖度很高,成本也很高。一般来说,用于微调的数据,需要让专业的标注人员来进行标注。

六、函数调用(Function Calling

在这里插入图片描述

图片来源:百度

虽然不太准确,但是我们可以把“函数”简单的理解为 “API”。

当我们有多个软件程序,就编制多个“函数“(API),这样当智能体需要使用某个程序的时候,就直接“调用”这个“函数“就可以了。

比如有个函数能算两个数的和,智能体要算 1 + 1,就直接拿这个函数出来,马上就算出 2(而不需要再写一个求和的程序)。

举个栗子,在图像处理系统里,智能体要处理一张照片,就得调用好多个函数。比如先调用边缘检测函数,把照片里物体的轮廓勾勒出来;再调用特征提取函数,分析物体的形状和纹理。这样一层一层处理下来,智能体就能认出照片里的东西。

函数调用虽然强大,但是也有很多问题。

比如,不同大模型之间的“函数调用”标准不同,导致为了适配多个大模型,可能需要写多个函数。

而 MCP就可以很好的解决这个问题。

七、MCPModel Context Protocol

在这里插入图片描述

MCP 是一种用于 AI 智能体与外部软件进行协作的标准开放协议。有了 MCP,一个软件只需要按 MCP 协议开发一个标准接口,即可被多个模型调用。

举个栗子,生活智能体通过 MCP 服务集成了多个软件工具,当我们要求智能体“点一杯咖啡”,它就可以自动调用“外卖程序”下单购买;当我们问智能体“今天是什么天气”,它就会自动调用“天气查询工具”。

MCP 也不是完美的,如果大家都遵循某一个大厂的 MCP 标准,就可能形成另一个“苹果税”。

八、A2AAgent-to-Agent Protocol

在这里插入图片描述

图片来源:百度

A2A(Agent - to - Agent Protocol)是谷歌推出的一项开源通信协议,旨在为不同框架开发的 AI 智能提供标准化协作方式,使其能够跨越技术壁垒,相互协同完成复杂流程。

说白了,MCP 解决了智能体与外部软件之间的协作问题;而 A2A 则解决了智能体与智能体之间的协作问题。

举个栗子,影像分析智能体和病历信息综合智能体就可以通过 A2A 协议来交流:

影像智能体把看到的病变特征发给病历智能体,病历智能体再把相关的病历信息发回来,俩人这么一对话,诊断报告就生成得又快又准。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值