传统的网格交易系统尽管广受欢迎,但存在一些关键局限性,例如价格水平静态、在趋势市场中表现不佳。此外,网格交易系统还容易受到市场突然跳空的影响,无法适应市场波动性的变化。随着机器学习软硬件技术的快速进步,本文提出了一种新型的网格交易系统,解决了传统网格交易系统的挑战。
该系统能够实时动态优化进场/出场点,并适应市场条件,在最大化利润潜力的同时管理风险。本文将详细介绍从数据准备到模型训练的全部过程,并揭示如何自行实施这一先进的交易策略。
传统的网格交易策略是一种不错的交易策略,它总是试图低买高卖。然而,当时间序列的平稳性(这是该策略的核心价值)无法保持时,该策略就会变成一场灾难。这通常是由于全球市场交易制度或某个国家央行政策的变化造成的。
GTSbot摘要
在之前的文章中,我们讨论了传统的网格交易系统。传统的网格交易策略是一种不错的交易策略,因为它总是试图低买高卖。然而,当时间序列的平稳性(这是该策略的核心价值)无法保持时,该策略就会失效。这通常是由于全球市场交易制度或某个国家央行政策的变化造成的。
在网格交易系统机器人(GTSbot)中,作者提出了一种新型的网格交易系统,解决了传统网格交易系统的挑战。该系统不再依赖于静态的价格水平作为定义网格的基准,而是使用回归网络来预测未来的价格走势,同时构建具有不同参考价格的多个网格。该系统能够实时动态优化进场/出场点,并适应市场条件,在最大化利润潜力的同时管理风险。
与传统的网格交易系统相比,GTSbot的业绩与Ichimoku外汇交易策略相当,在回测期间实现了高达13.76%的投资回报率(ROI),并且将最大回撤(Max DD)降低到基准策略的五分之一。
什么是GTSbot?
-
回归网络模型: 该组件负责使用外汇价格数据预测未来的价格走势。然而,预测精确的价格并不是该模型的目标。该模型的目标是使用预测的未来价格和历史数据的组合来确定未来的趋势,以便我们决定是做多还是做空。本文提出的模型称为缩放共轭梯度法(SCG),该方法由Martin Fodslette Moller在论文《一种用于快速监督学习的缩放共轭梯度算法》中提出,旨在加速模型训练时间以达到全局最小值。
-
训练集RMSE:0.0126%
-
验证集RMSE:0.0126%
-
模型名称:sequential_1
-
第一层(LSTM):输出形状为(None, 11, 200),参数数量为161,600
-
第二层(LSTM):输出形状为(None, 200),参数数量为320,800
-
输出层(Dense):输出形状为(None, 1),参数数量为201
-
总参数数量:482,601 (1.84 MB),可训练参数数量:482,601 (1.84 MB),不可训练参数数量:0 (0.00 B)
-
该模型运行良好,并且作者大大减少了模型训练所需的时间。作者选择了长短期记忆(LSTM)模型,这是时间序列预测中最流行的模型。以下是作者使用的LSTM模型的架构:
-
LSTM模型的验证均方根误差(RMSE)结果如下:
-
趋势分类模块(TCB): 该组件根据预测的价格走势对当前趋势进行分类。它使用回归网络的输出来确定趋势是看涨、看跌还是中性。在学校的物理课上,我们了解到,如果速度和加速度都为正,那么很有可能我们会看到正动量,反之亦然。在这里,我们使用价格公式的导数作为速度参数,其二阶导数作为加速度参数。根据中心差分商和二阶中心差分近似规则,我们可以将这些导数简化为以下公式:
-
根据上述规则,让我们添加已有的和预测的数据来重写这些方程:
-
一旦我们确认这两个导数都为正,我们就可以断定价格将会上涨,并将看涨信号发送给下一个组件以开立多头头寸。如果这两个导数都为负,则将看跌信号发送给下一个组件以开立空头头寸。如果上述条件都不满足,我们认为市场仍然波动,不会将信号发送给下一个组件以开立任何头寸。
-
predict(k + 1)表示预测价格
-
Close(k)表示当前价格
-
Close(k - 1)表示历史价格
-
一阶导数:dClose = (predict(k + 1) - Close(k)) / dk
-
二阶导数:d2Close = [predict(k + 1) + Close(k - 1) - 2Close(k)] / dk^2
-
f(x + h)表示预测价格
-
f(x)表示当前价格
-
f(x - h)表示历史价格
-
h表示预测价格和历史价格之间的时间差
-
一阶导数:f’(x) = [f(x + h) - f(x - h)] / 2h
-
二阶导数:f’'(x) = [f(x + h) - 2f(x) + f(x - h)] / h^2
-
网格系统管理模块(GSM): 一旦该组件接收到TCB发出的看涨或看跌信号,就会相应地开立多头或空头头寸。在开立任何头寸之前,它会进行一些检查:
1. 我们将策略的最大持仓量设置为15。在论文中还提到,这个数字最好是奇数, 这样多头和空头头寸可以相互抵消。 2. 我们将x_threshold定义为15(样本),这意味着在我们上次开立的头寸15分钟后, 我们才会开立新的头寸。这是为了确保我们不会在单一的上涨或下跌趋势中过度交易我们的资金。 3. 我们将y_threshold设置为2(点)。我们需要确保我们开立的新头寸至少比之前所有的 多头头寸高出2点,或者比之前所有的空头头寸低出2点。从本质上讲,这是该交易系统的网格大小。
-
篮子权益系统管理模块(BESM): 最后,BESM组件实质上充当风险管理部门。它监控每个开立的头寸,并在达到止盈点时将其平仓。有趣的是,论文中提到,BESM组件专门设计为不设置任何止损点。作者认为,这种新型网格系统在TCB组件意识到趋势反转时,会开立相反的头寸以弥补错误开立的头寸。
如何实施GTSbot?
-
加载代码: (代码见星球)
-
策略表现图表:
-
价格图表: 显示了策略在2023年1月至2024年10月期间的价格走势。
-
开仓数量图表: 展示了策略在不同时间段的开仓数量变化情况。
-
盈亏图表: 显示了策略在不同时间段的盈亏情况。
-
最终回测策略表现:
-
该策略在最初的半年内似乎非常有利可图。
-
然而,正如我们所知,该策略缺乏对每笔交易适当的止损点,因此这些交易在市场上停留了很长时间。这给我们留下了很大的改进空间:
-
我们可以采用文章中提到的三重障碍法来限制每笔交易的风险,而不仅仅是简单地添加一个止损点。
-
由于外汇交易会在QuantConnect系统中相互抵消,因此无法在QuantConnect系统上同时开立多头和空头订单。由于这个原因,我们无法使用QuantConnect来进一步回测该策略。
-
你可以通过FXCM同时开立多头和空头订单。然而,它没有提供一个模拟平台来对历史价格进行回测。
-
FXCM提供了API和模拟账户,因此你可以构建一个模拟回测工具进行纸上交易。然而,构建这个工具需要付出很多努力。
- 策略评价: 作者不会将这种策略评判为好的或坏的策略。然而,这篇论文确实为我们提供了许多重新思考网格交易系统能够和应该具备的能力的想法。作者希望读者能够像他一样享受阅读这篇论文。
总结:
本文介绍了一种新型的网格交易系统GTSbot,该系统克服了传统网格交易系统的一些局限性,例如静态价格水平、无法适应市场波动等。GTSbot通过使用回归网络预测未来价格走势,并构建动态网格,同时结合趋势分类模块和风险管理系统,实现了更高的收益和更低的风险。
未来研究方向:
-
改进风险管理系统,例如添加止损点或采用更复杂的风控策略。
-
探索更先进的机器学习模型,例如Transformer模型,以提高价格预测精度。
-
将GTSbot应用于其他金融市场,例如股票、期货等。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈