LLM多智能体系统的8种任务协作模式【上】

多智能体系统(Multi-Agent System,MAS)已经成为AI Agent领域广受认可的一种重要设计范式,其具有比单个智能体更高的适应性与可扩展能力,以适应复杂的业务领域变化的需求。如果把智能体看作是一个数字化的智慧人,那么就必然面临一个问题:“人”与“人”之间应该如何协作来回答问题或完成任务?参考一些多智能体框架的设计,这里为大家总结8种多智能体之间的任务协作模式:

  1. 反思模式

  2. 顺序模式

  3. **层次模式
    **

  4. **转交模式
    **

  5. **仿神经网络模式
    **

  6. **辩论模式
    **

  7. **嵌套模式
    **

  8. 自定义模式

1

反思模式

【模式概述】

这是一种双Agent协作的典型模式:

  • A智能体接受输入任务,进行输出

  • B智能体对A输出进行反思或审核并反馈给A

  • 重复,直到达到最大迭代次数或B审核通过

**【例子】
**

  • **代码生成:**一个负责编码,一个负责审核并反馈意见

  • **代码解释器:**一个负责编码,一个负责执行并反馈结果

反思模式可以泛化成更通用的**“二人对话”**模式,只是给两者设定的角色不同而已,都是通过二人对话协作来解决问题。

2

顺序模式

【模式概述】

顺序模式是一种多个Agent以确定的顺序工作的模式,如果你了解CrewAI,应该熟悉这种模式:一个团队(Crew)内部多个Agent会被分配确定的子任务(Task),按照固定的顺序调度执行,并把子任务结果传递给下一个Agent,直到流程结束。

【例子】

  • 营销文案创作:idea生成–>目录结构–>文章创作–>润色审核

  • **市场调查分析:**网络搜索–>调查报告起草–>PPT制作

  • **HR简历筛选:**简历下载–>简历筛选–>邮件起草与发送

顺序模式适合具有确定性工作流的任务,也是最常见的一种协作模式。

3

层次模式

【模式概述】

层次也是一种常见的协作模式,其对应着人类工作中常见的一种管理架构,即由一个管理者带领多个工作人员一起完成任务。与顺序模式不一样的是,这里的工作人员由于并没有明确固定的任务流程,因此也就需要一个管理者Agent(Manager Agent)来负责分配任务给工作Agent(Worker Agent):

管理者在分配任务时,又会涉及到不同的决策模式,比如在CrewAI中,通常为借助LLM与上下文自动判断;而在AutoGen中,则存在随机、顺序、自动、自定义等多种决策模式。

在这种模式中,如果一个任务只拆分给一个工作Agent来完成,可以认为其退化成了“路由”模式。

【例子】

  • **团队讨论:**由Manager带领团队围绕话题展开头脑风暴。

  • **分布式研究:**Manager负责将复杂的研究任务拆分给不同的工作Agent来协同完成,Manager负责任务的检查、汇总与整理。

  • **智能RAG:**在多数据源的Agentic RAG中,由管理Agent协调多个工作Agent来共同完成不同数据源的检索任务,以回答跨数据源的复杂问题。

4

转交模式

【模式概述】

转交模式是OpenAI 最新的轻量级框架Swam采用的一种多Agent协作模式。这种模式的核心思想是:任何一个Agent可以借助自己的一个工具将任务转交给其他的Agent。它与顺序模式及层次模式的区别在于:

  • 它没有固定的工作流程。

  • 它没有明确的管理Agent负责分配任务,每一个智能体都可以定义多个“转交”工具,由LLM判断是否需要转交任务给其他智能体。

当然,在实际应用中,你不一定需要定义任意两个Agent之间的转交方法。比如在一个典型的客户服务场景,你可以会让一个接入客户的分类Agent来负责转交请求给另外两个负责产品咨询与售后服务的Agent,而这两个Agent在处理完收到的任务后可以再转交回分类Agent。你甚至可以定义负责产品咨询的Agent如果错误的收到了售后服务的请求,也可以再转交给售后服务Agent。

【例子】

  • 客户服务分类:在线客户服务中,由一个负责分类的Agent接入客户,并负责根据客户请求转交给销售Agent、服务Agent、甚至人类Agent来完成;复杂具体工作的Agent也可以相互转交任务。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值