使用RAG技术构建企业级文档问答系统之基础流程

1 概述

本文是本系列(使用RAG技术构建企业级文档问答系统)的第二篇,将介绍检索增强生成(Retrieval Augmented Generation,简称RAG)最基础流程。

所谓检索增强生成,是大语言模型兴起之后发展迅速的一个应用领域,简单说就是,这项技术,可以根据用户输入的问题,从文档(如PDF、Word、PPT、TXT、网页等)中自动检索跟问题相关的文本片段(或称为知识片段、上下文),然后将一段指令、用户输入的问题、文本片段拼装成一个Prompt(也就是大语言模型的输入),让大语言模型生成一个回答。

在ChatGPT最初发布的时候,回答问题主要还是依赖ChatGPT训练时的知识,由此导致了三个显著问题:

  • 知识陈旧:也就是新发生的事情,它是没办法回答的
  • 幻觉:也就是编造与事实不符的回答
  • 没有办法让ChatGPT基于自己独有的,如个人积累的或者企业内部积累的知识文档回答问题,只能基于已经公开的信息回答

根据RAG所检索对象的不同,大致可以分成2类,但底层的技术其实是高度相似的:

  • 知识库问答:主要是检索企业内部一系列文档,比如Word、PDF、Wiki、Confluence等,或者企业自建的知识管理平台。很多企业其实积累了非常多的内部文档,传统方式只能使用关键词,或者特定类目检索,效率低下,使用RAG后可以高效快速地直接返回答案,当然这个地方也有它自己的坑,先按下不表,后面有机会再细谈
  • 联网搜索问答:这个主要是检索整个互联网,最典型代表就是Perplexity,国内的典型产品像秘塔AI搜索、天工AI、360AI搜索等,其实也是检索文档,但会首先借助搜索引擎API,获取一个网页列表,然后再对每个网页执行加载、切分、向量化操作,这个之前已经有一篇文章介绍了,感兴趣的朋友可以访问

上面反复提到了知识库,在RAG的流程中,知识库会经历下面4个步骤处理,如下图所示:

  • 加载:可以简单理解成把文档读取成字符串
  • 切分:按照特定长度,把文档切分成文本片段,做这一步是因为,后面要使用向量模型将切分后的文本片段(其实就是段落或者句子)转换成向量,由于向量模型输入长度限制,所以这一步必须按照特定长度切分
  • 向量化:这一步会使用一个向量模型,将一个句子转换成一个向量,跟word2vec模型其实不是一个东西,word2vec模型是把一个字符或者一个词,转换成一个向量,而在RAG中说的向量模型,是把句子转换成向量,这样后续就可以使用向量计算,来比较句子之间的相似性,所谓RAG中的检索,很大程度是依赖向量,所以这块很重要
  • 向量存储:这一步一般会使用向量库存储向量化好的文本片段,以及一些元数据信息,如文件名、ID之类的,向量库是类似MySQL、PostgreSQL一样的一个数据库,只不过它专注于存储向量,典型的有Milvus、FAISS、Chroma、Qdrant、Pinecone、Weatiate、PGVector等

知识库处理好,保存到向量库之后,当用户提问时,会将用户问题也进行向量化,然后拿用户问题向量,去向量库中,使用余弦相似度(只是原理,后续后再详细展开),检索到最相似的一些句子,然后将用户问题、检索到的相似句子,一同组成一个Prompt,输入大模型,生成答案,如下图所示:

下面将构建这个完整流程。

本文代码已经开源,地址在:https://github.com/Steven-Luo/MasteringRAG/blob/main/01_baseline.ipynb

2 环境准备

下面代码中所使用到的数据,可以在代码仓库中找到,其中的“问题-答案”对的构建方法,在上一篇文章中有完整说明:

  • 安装Python包
  • 准备Ollama,安装好Ollama之后,使用ollama pull qwen2:7b-instruct下载模型
  • 下载向量模型BAAI/bge-large-zh-v1.5,这步可选,也可以在执行代码时自动下载,但需要确保能够访问到HuggingFace

上面的模型,都可以在本地运行,建议至少预留8GB的内存。

代码在Google Colab环境下进行了测试,正常情况下,安装Anaconda基本上会包含大部分所用到的包,再安装如下包即可:

pip install -U langchain langchain_community pypdf sentence_transformers chromadb

所安装包的版本

import langchain, langchain_community, pypdf, sentence_transformers, chromadb

for module in (langchain, langchain_community, pypdf, sentence_transformers, chromadb):
    print(f"{module.__name__:<30}{module.__version__}")
langchain                     0.2.10
langchain_community           0.2.9
pypdf                         4.3.1
sentence_transformers         3.0.1
chromadb                      0.5.4
import os
import pandas as pd

from langchain_community.vectorstores import Chroma

# 如果已经下载到本地,可以替换为本地路径
EMBEDDING_MODEL_PATH = 'BAAI/bge-large-zh-v1.5'
dt = '20240713'
version = 'v1'

output_dir = os.path.join('outputs', f'{version}_{dt}')

加载数据集,包含问题、回答、所使用的文档片段,因此,使用这个数据集,可以对检索、生成效果进行测试

qa_df = pd.read_excel(os.path.join(output_dir, 'question_answer.xlsx'))

3 文档处理

3.1 文档加载

此处使用PyPDF这个库进行加载,处理PDF的库还有很多,后面会专门出一篇文章进行介绍。

from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("data/2024全球经济金融展望报告.pdf")
documents = loader.load()

3.2 文档切分

在企业内部,一般知识库会比较庞大,每次都重新切分会比较耗时,因此,对切分后的文档片段也可以保存,方便下次再加载

from uuid import uuid4
import os
import pickle

from langchain.text_splitter import RecursiveCharacterTextSplitter

def split_docs(documents, filepath, chunk_size=400, chunk_overlap=40, seperators=['\n\n\n', '\n\n'], force_split=False):
    if os.path.exists(filepath) and not force_split:
        print('found cache, restoring...')
        return pickle.load(open(filepath, 'rb'))

    splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap,
        separators=seperators
    )
    split_docs = splitter.split_documents(documents)
    for chunk in split_docs:
        chunk.metadata['uuid'] = str(uuid4())

    pickle.dump(split_docs, open(filepath, 'wb'))

    return split_docs
    
splitted_docs = split_docs(documents, os.path.join(output_dir, 'split_docs.pkl'), chunk_size=500, chunk_overlap=50)

3.3 向量化

加载向量模型

from langchain.embeddings import HuggingFaceBgeEmbeddings
import torch

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'device: {device}')

embeddings = HuggingFaceBgeEmbeddings(
    model_name=EMBEDDING_MODEL_PATH,
    model_kwargs={'device': device},
    encode_kwargs={'normalize_embeddings': True}
)

将文档向量化,并使用Chroma持久化

from tqdm.auto import tqdm

def get_vector_db(docs, store_path, force_rebuild=False):
    if not os.path.exists(store_path):
        force_rebuild = True

    if force_rebuild:
        vector_db = Chroma.from_documents(
            docs,
            embedding=embeddings,
            persist_directory=store_path
        )
    else:
        vector_db = Chroma(
            persist_directory=store_path,
            embedding_function=embeddings
        )
    return vector_db

跟上方的文档切分类似,企业知识库通常会比较庞大,如果每次都重新向量化,会非常耗时,因此,可以将向量化后的文档片段持久化

vector_db = get_vector_db(splitted_docs, store_path=os.path.join(output_dir, 'chromadb', 'bge_large_v1.5'))

4 检索

Langchain提供了比较方便的API,使用下方的函数即可完成检索

def retrieve(vector_db, query: str, k=5):
    return vector_db.similarity_search(query, k=k)

为了方便后续对文档问答效果进行优化,此处对中间环节——检索,进行评估。

注意,一般这一步评估也是比较麻烦的,因为文档问答,答案来源于文档片段,如果回答错误,不能说明检索一定错误,反过来,如果答案正确,那么在检索环节,只要正确回答的文本“来自”所检索的文档片段,就应该算检索正确,但具体回答是否“来自”文档片段时,有技术上的问题,具体来说,有以下几点:

  • 不能直接拿字符串匹配,因为生成的答案经过了大模型的加工,不能保整与检索的文档片段中的文字一字不差
  • 使用向量模型,将两者转换成向量,计算向量相似度,但这样面临卡阈值的问题,到底阈值多少算是答案参考了知识片段
  • 使用字符串模糊匹配的方式,也有跟计算向量相似度类似的卡阈值问题
  • 最终答案可能来源于原本相连的段落,但由于文档切分,将整个段落切分到了两个文档片段,这样虽然可能最后回答正确,但单独拿出每一个片段来,跟答案的相似度可能都不高

后面会出一篇专门的文章,专门介绍文档问答的检索、回答的性能。

回到本文,由于在构造“问题-回答”对时,特意记录了所使用的文档片段,这样就可以直接用这个文档片段的UUID计算,避免了上面的问题。

具体到检索的性能,一般使用HitRate进行评估,其中为测试集总数,第条数据检索命中时为1,否则为0。

由于知识片段本身的相似性比较高,因此,只检索一条一般是没法回答问题的。一般会检索Top-K个知识片段。具体到指标计算,就是对于每一条测试数据,检索个知识片段,只要有一个检索命中,那就为1,否则为0。

下面是Top1~Top8的HitRate计算:

test_df = qa_df[(qa_df['dataset'] == 'test') & (qa_df['qa_type'] == 'detailed')]

# 计算Top1~Top8的HitRate
top_k_arr = list(range(1, 9))
hit_stat_data = []

for idx, row in tqdm(test_df.iterrows(), total=len(test_df)):
    question = row['question']
    true_uuid = row['uuid']
    chunks = retrieve(vector_db, question, k=max(top_k_arr))
    retrieved_uuids = [doc.metadata['uuid'] for doc in chunks]

    for k in top_k_arr:
        hit_stat_data.append({
            'question': question,
            'top_k': k,
            'hit': int(true_uuid in retrieved_uuids[:k])
        })
        
hit_stat_df = pd.DataFrame(hit_stat_data)
hit_stat_df.sample(5)
questiontop_khit
489美元的走势如何变化?21
682美联储加息对美国房地产市场风险排名产生了什么影响?30
344预计2023年欧元区的经济增速大概是多少?10
2302023年前8个月全球货物贸易量指数的变化情况如何?71
444美联储在2月1日的基点变动了多少?51

检索HitRate计算

import seaborn as sns

hit_stat_df.groupby('top_k')['hit'].mean().reset_index()
sns.barplot(x='top_k', y='hit', data=hit_stat_df.groupby('top_k')['hit'].mean().reset_index())

大家可以稍微留意一下这个指标,后续会陆续对检索进行优化,大家到时可以直观地观察到检索性能的提升。

5 问答

下面就是综合向量库、检索的完整问答流程了。

5.1 使用LCEL

这一步演示如何使用Langchain Expression Language,这种方式整个代码会相对简洁,但如果对流程不熟悉,遇到bug不好调试。

5.1.1 流式输出

from langchain.llms import Ollama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import PromptTemplate

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

llm = Ollama(
    model='qwen2:7b-instruct',
    base_url="http://localhost:11434"
)

prompt_tmpl = """
你是一个金融分析师,擅长根据所获取的信息片段,对问题进行分析和推理。
你的任务是根据所获取的信息片段(<<<<context>>><<<</context>>>之间的内容)回答问题。
回答保持简洁,不必重复问题,不要要添加描述性解释和与答案无关的任何内容。
已知信息:
<<<<context>>>
{context}
<<<</context>>>

问题:{question}
请回答:
"""
prompt = PromptTemplate.from_template(prompt_tmpl)
retriever = vector_db.as_retriever(search_kwargs={'k': 4})

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

for chunk in rag_chain.stream("2023年10月美国ISM制造业PMI指数较上月有何变化?"):
    print(chunk, end="", flush=True)

输出

2023年10月美国ISM制造业PMI指数较上个月大幅下降2.3个百分点。

5.1.2 非流式输出

print(rag_chain.invoke('2023年10月美国ISM制造业PMI指数较上月有何变化?'))

输出

2023年10月美国ISM制造业PMI指数较上个月大幅下降2.3个百分点。

5.2 流程拆解

下面对整个过程,拆解成常规的Python代码:

def rag(query, n_chunks=5):
    prompt_tmpl = """
你是一个金融分析师,擅长根据所获取的信息片段,对问题进行分析和推理。
你的任务是根据所获取的信息片段(<<<<context>>><<<</context>>>之间的内容)回答问题。
回答保持简洁,不必重复问题,不要要添加描述性解释和与答案无关的任何内容。
已知信息:
<<<<context>>>

<<<</context>>>

问题:
请回答:
""".strip()

    chunks = retrieve(vector_db, question, k=n_chunks)
    prompt = prompt_tmpl.replace('', '\n\n'.join([doc.page_content for doc in chunks])).replace('', query)

    return llm(prompt), [doc.page_content for doc in chunks]
prediction_df = qa_df[qa_df['dataset'] == 'test'][['uuid', 'question', 'qa_type', 'answer']]

answer_dict = {}
for idx, row in tqdm(prediction_df.iterrows(), total=len(prediction_df)):
    uuid = row['uuid']
    question = row['question']
    answer, context = rag(question, n_chunks=4)
    answer_dict[question] = {
        'uuid': uuid,
        'ref_answer': row['answer'],
        'gen_answer': answer,
        'context': context
    }
    
prediction_df.loc[:, 'gen_answer'] = prediction_df['question'].apply(lambda q: answer_dict[q]['gen_answer'])
prediction_df.loc[:, 'context'] = prediction_df['question'].apply(lambda q: answer_dict[q]['context'])
prediction_df.sample(5)

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### 构建企业级RAG问答系统的最佳实践 #### 1. 数据准备与预处理 数据的质量直接影响到最终的问答效果。因此,在构建企业级RAG系统之前,需对内部文档、FAQ列表以及其他结构化或非结构化的数据源进行全面整理和清洗。这一步骤可能包括去除冗余信息、标准化术语以及标注敏感字段等操作[^2]。 对于特定行业而言,还需要考虑专业知识背景下的语义理解问题。例如医疗健康类应用需要特别关注医学名词的一致性和准确性;金融领域则要确保法规条款解释无误。这种细致的数据准备工作能够帮助后续检索阶段更精准定位相关内容片段[^1]。 #### 2. 检索模块设计 在RAG架构中,检索部分扮演着至关重要的角色——它负责从海量存储库中快速找到与当前提问高度匹配的知识条目。目前主流做法有两种: - **向量相似度搜索**:利用预先训练好的编码器将文本转换成固定长度向量表示形式后再计算距离得分; - **关键词匹配机制**:基于传统IR理论直接比较问句同候选集之间的共同词项频率统计特性。 实际开发过程中往往结合两者优势形成混合方案以兼顾速度与精度需求。另外值得注意的是,在某些特殊场景下还可以引入外部API服务作为补充来源进一步扩大覆盖范围。 ```python from langchain.vectorstores import FAISS from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_texts(texts, embeddings) ``` 上述代码展示了一个简单版本的FAISS矢量化索引创建过程,适用于中小型规模的企业资料管理环境。 #### 3. 提示工程优化 为了使大语言模型更好地理解和回应用户的意图,精心设计Prompt至关重要。具体来说可以采用如下几种技巧来改进对话体验: - 使用清晰简洁的语言描述任务目标; - 明确指出可用参考资料的位置及其作用; - 控制上下文窗口大小从而减少不必要的干扰因素影响判断逻辑; - 针对企业特有的业务流程定制专属模板以便于新员工培训期间迅速上手操作指南等内容学习。 #### 4. 性能调优与监控维护 即使经过充分测试上线后的系统也可能因为各种原因逐渐偏离预期表现水平。为此建议定期审查日志记录查找潜在瓶颈所在并及时调整参数配置直至恢复正常运作状态为止。与此同时也要建立完善的反馈收集渠道鼓励终端使用者积极参与进来共同促进产品迭代升级进程加快步伐向前迈进! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值