1 概述
本文是本系列(使用RAG技术构建企业级文档问答系统)的第二篇,将介绍检索增强生成(Retrieval Augmented Generation,简称RAG)最基础流程。
所谓检索增强生成,是大语言模型兴起之后发展迅速的一个应用领域,简单说就是,这项技术,可以根据用户输入的问题,从文档(如PDF、Word、PPT、TXT、网页等)中自动检索跟问题相关的文本片段(或称为知识片段、上下文),然后将一段指令、用户输入的问题、文本片段拼装成一个Prompt(也就是大语言模型的输入),让大语言模型生成一个回答。
在ChatGPT最初发布的时候,回答问题主要还是依赖ChatGPT训练时的知识,由此导致了三个显著问题:
- 知识陈旧:也就是新发生的事情,它是没办法回答的
- 幻觉:也就是编造与事实不符的回答
- 没有办法让ChatGPT基于自己独有的,如个人积累的或者企业内部积累的知识文档回答问题,只能基于已经公开的信息回答
根据RAG所检索对象的不同,大致可以分成2类,但底层的技术其实是高度相似的:
- 知识库问答:主要是检索企业内部一系列文档,比如Word、PDF、Wiki、Confluence等,或者企业自建的知识管理平台。很多企业其实积累了非常多的内部文档,传统方式只能使用关键词,或者特定类目检索,效率低下,使用RAG后可以高效快速地直接返回答案,当然这个地方也有它自己的坑,先按下不表,后面有机会再细谈
- 联网搜索问答:这个主要是检索整个互联网,最典型代表就是Perplexity,国内的典型产品像秘塔AI搜索、天工AI、360AI搜索等,其实也是检索文档,但会首先借助搜索引擎API,获取一个网页列表,然后再对每个网页执行加载、切分、向量化操作,这个之前已经有一篇文章介绍了,感兴趣的朋友可以访问
上面反复提到了知识库,在RAG的流程中,知识库会经历下面4个步骤处理,如下图所示:
- 加载:可以简单理解成把文档读取成字符串
- 切分:按照特定长度,把文档切分成文本片段,做这一步是因为,后面要使用向量模型将切分后的文本片段(其实就是段落或者句子)转换成向量,由于向量模型输入长度限制,所以这一步必须按照特定长度切分
- 向量化:这一步会使用一个向量模型,将一个句子转换成一个向量,跟word2vec模型其实不是一个东西,word2vec模型是把一个字符或者一个词,转换成一个向量,而在RAG中说的向量模型,是把句子转换成向量,这样后续就可以使用向量计算,来比较句子之间的相似性,所谓RAG中的检索,很大程度是依赖向量,所以这块很重要
- 向量存储:这一步一般会使用向量库存储向量化好的文本片段,以及一些元数据信息,如文件名、ID之类的,向量库是类似MySQL、PostgreSQL一样的一个数据库,只不过它专注于存储向量,典型的有Milvus、FAISS、Chroma、Qdrant、Pinecone、Weatiate、PGVector等
知识库处理好,保存到向量库之后,当用户提问时,会将用户问题也进行向量化,然后拿用户问题向量,去向量库中,使用余弦相似度(只是原理,后续后再详细展开),检索到最相似的一些句子,然后将用户问题、检索到的相似句子,一同组成一个Prompt,输入大模型,生成答案,如下图所示:
下面将构建这个完整流程。
本文代码已经开源,地址在:https://github.com/Steven-Luo/MasteringRAG/blob/main/01_baseline.ipynb
2 环境准备
下面代码中所使用到的数据,可以在代码仓库中找到,其中的“问题-答案”对的构建方法,在上一篇文章中有完整说明:
- 安装Python包
- 准备Ollama,安装好Ollama之后,使用
ollama pull qwen2:7b-instruct
下载模型 - 下载向量模型
BAAI/bge-large-zh-v1.5
,这步可选,也可以在执行代码时自动下载,但需要确保能够访问到HuggingFace
上面的模型,都可以在本地运行,建议至少预留8GB的内存。
代码在Google Colab环境下进行了测试,正常情况下,安装Anaconda基本上会包含大部分所用到的包,再安装如下包即可:
pip install -U langchain langchain_community pypdf sentence_transformers chromadb
所安装包的版本
import langchain, langchain_community, pypdf, sentence_transformers, chromadb
for module in (langchain, langchain_community, pypdf, sentence_transformers, chromadb):
print(f"{module.__name__:<30}{module.__version__}")
langchain 0.2.10
langchain_community 0.2.9
pypdf 4.3.1
sentence_transformers 3.0.1
chromadb 0.5.4
import os
import pandas as pd
from langchain_community.vectorstores import Chroma
# 如果已经下载到本地,可以替换为本地路径
EMBEDDING_MODEL_PATH = 'BAAI/bge-large-zh-v1.5'
dt = '20240713'
version = 'v1'
output_dir = os.path.join('outputs', f'{version}_{dt}')
加载数据集,包含问题、回答、所使用的文档片段,因此,使用这个数据集,可以对检索、生成效果进行测试
qa_df = pd.read_excel(os.path.join(output_dir, 'question_answer.xlsx'))
3 文档处理
3.1 文档加载
此处使用PyPDF这个库进行加载,处理PDF的库还有很多,后面会专门出一篇文章进行介绍。
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("data/2024全球经济金融展望报告.pdf")
documents = loader.load()
3.2 文档切分
在企业内部,一般知识库会比较庞大,每次都重新切分会比较耗时,因此,对切分后的文档片段也可以保存,方便下次再加载
from uuid import uuid4
import os
import pickle
from langchain.text_splitter import RecursiveCharacterTextSplitter
def split_docs(documents, filepath, chunk_size=400, chunk_overlap=40, seperators=['\n\n\n', '\n\n'], force_split=False):
if os.path.exists(filepath) and not force_split:
print('found cache, restoring...')
return pickle.load(open(filepath, 'rb'))
splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=seperators
)
split_docs = splitter.split_documents(documents)
for chunk in split_docs:
chunk.metadata['uuid'] = str(uuid4())
pickle.dump(split_docs, open(filepath, 'wb'))
return split_docs
splitted_docs = split_docs(documents, os.path.join(output_dir, 'split_docs.pkl'), chunk_size=500, chunk_overlap=50)
3.3 向量化
加载向量模型
from langchain.embeddings import HuggingFaceBgeEmbeddings
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'device: {device}')
embeddings = HuggingFaceBgeEmbeddings(
model_name=EMBEDDING_MODEL_PATH,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': True}
)
将文档向量化,并使用Chroma持久化
from tqdm.auto import tqdm
def get_vector_db(docs, store_path, force_rebuild=False):
if not os.path.exists(store_path):
force_rebuild = True
if force_rebuild:
vector_db = Chroma.from_documents(
docs,
embedding=embeddings,
persist_directory=store_path
)
else:
vector_db = Chroma(
persist_directory=store_path,
embedding_function=embeddings
)
return vector_db
跟上方的文档切分类似,企业知识库通常会比较庞大,如果每次都重新向量化,会非常耗时,因此,可以将向量化后的文档片段持久化
vector_db = get_vector_db(splitted_docs, store_path=os.path.join(output_dir, 'chromadb', 'bge_large_v1.5'))
4 检索
Langchain提供了比较方便的API,使用下方的函数即可完成检索
def retrieve(vector_db, query: str, k=5):
return vector_db.similarity_search(query, k=k)
为了方便后续对文档问答效果进行优化,此处对中间环节——检索,进行评估。
注意,一般这一步评估也是比较麻烦的,因为文档问答,答案来源于文档片段,如果回答错误,不能说明检索一定错误,反过来,如果答案正确,那么在检索环节,只要正确回答的文本“来自”所检索的文档片段,就应该算检索正确,但具体回答是否“来自”文档片段时,有技术上的问题,具体来说,有以下几点:
- 不能直接拿字符串匹配,因为生成的答案经过了大模型的加工,不能保整与检索的文档片段中的文字一字不差
- 使用向量模型,将两者转换成向量,计算向量相似度,但这样面临卡阈值的问题,到底阈值多少算是答案参考了知识片段
- 使用字符串模糊匹配的方式,也有跟计算向量相似度类似的卡阈值问题
- 最终答案可能来源于原本相连的段落,但由于文档切分,将整个段落切分到了两个文档片段,这样虽然可能最后回答正确,但单独拿出每一个片段来,跟答案的相似度可能都不高
后面会出一篇专门的文章,专门介绍文档问答的检索、回答的性能。
回到本文,由于在构造“问题-回答”对时,特意记录了所使用的文档片段,这样就可以直接用这个文档片段的UUID计算,避免了上面的问题。
具体到检索的性能,一般使用HitRate进行评估,其中为测试集总数,第条数据检索命中时为1,否则为0。
由于知识片段本身的相似性比较高,因此,只检索一条一般是没法回答问题的。一般会检索Top-K个知识片段。具体到指标计算,就是对于每一条测试数据,检索个知识片段,只要有一个检索命中,那就为1,否则为0。
下面是Top1~Top8的HitRate计算:
test_df = qa_df[(qa_df['dataset'] == 'test') & (qa_df['qa_type'] == 'detailed')]
# 计算Top1~Top8的HitRate
top_k_arr = list(range(1, 9))
hit_stat_data = []
for idx, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = row['question']
true_uuid = row['uuid']
chunks = retrieve(vector_db, question, k=max(top_k_arr))
retrieved_uuids = [doc.metadata['uuid'] for doc in chunks]
for k in top_k_arr:
hit_stat_data.append({
'question': question,
'top_k': k,
'hit': int(true_uuid in retrieved_uuids[:k])
})
hit_stat_df = pd.DataFrame(hit_stat_data)
hit_stat_df.sample(5)
question | top_k | hit | |
---|---|---|---|
489 | 美元的走势如何变化? | 2 | 1 |
682 | 美联储加息对美国房地产市场风险排名产生了什么影响? | 3 | 0 |
344 | 预计2023年欧元区的经济增速大概是多少? | 1 | 0 |
230 | 2023年前8个月全球货物贸易量指数的变化情况如何? | 7 | 1 |
444 | 美联储在2月1日的基点变动了多少? | 5 | 1 |
检索HitRate计算
import seaborn as sns
hit_stat_df.groupby('top_k')['hit'].mean().reset_index()
sns.barplot(x='top_k', y='hit', data=hit_stat_df.groupby('top_k')['hit'].mean().reset_index())
大家可以稍微留意一下这个指标,后续会陆续对检索进行优化,大家到时可以直观地观察到检索性能的提升。
5 问答
下面就是综合向量库、检索的完整问答流程了。
5.1 使用LCEL
这一步演示如何使用Langchain Expression Language,这种方式整个代码会相对简洁,但如果对流程不熟悉,遇到bug不好调试。
5.1.1 流式输出
from langchain.llms import Ollama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import PromptTemplate
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
llm = Ollama(
model='qwen2:7b-instruct',
base_url="http://localhost:11434"
)
prompt_tmpl = """
你是一个金融分析师,擅长根据所获取的信息片段,对问题进行分析和推理。
你的任务是根据所获取的信息片段(<<<<context>>><<<</context>>>之间的内容)回答问题。
回答保持简洁,不必重复问题,不要要添加描述性解释和与答案无关的任何内容。
已知信息:
<<<<context>>>
{context}
<<<</context>>>
问题:{question}
请回答:
"""
prompt = PromptTemplate.from_template(prompt_tmpl)
retriever = vector_db.as_retriever(search_kwargs={'k': 4})
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
for chunk in rag_chain.stream("2023年10月美国ISM制造业PMI指数较上月有何变化?"):
print(chunk, end="", flush=True)
输出
2023年10月美国ISM制造业PMI指数较上个月大幅下降2.3个百分点。
5.1.2 非流式输出
print(rag_chain.invoke('2023年10月美国ISM制造业PMI指数较上月有何变化?'))
输出
2023年10月美国ISM制造业PMI指数较上个月大幅下降2.3个百分点。
5.2 流程拆解
下面对整个过程,拆解成常规的Python代码:
def rag(query, n_chunks=5):
prompt_tmpl = """
你是一个金融分析师,擅长根据所获取的信息片段,对问题进行分析和推理。
你的任务是根据所获取的信息片段(<<<<context>>><<<</context>>>之间的内容)回答问题。
回答保持简洁,不必重复问题,不要要添加描述性解释和与答案无关的任何内容。
已知信息:
<<<<context>>>
<<<</context>>>
问题:
请回答:
""".strip()
chunks = retrieve(vector_db, question, k=n_chunks)
prompt = prompt_tmpl.replace('', '\n\n'.join([doc.page_content for doc in chunks])).replace('', query)
return llm(prompt), [doc.page_content for doc in chunks]
prediction_df = qa_df[qa_df['dataset'] == 'test'][['uuid', 'question', 'qa_type', 'answer']]
answer_dict = {}
for idx, row in tqdm(prediction_df.iterrows(), total=len(prediction_df)):
uuid = row['uuid']
question = row['question']
answer, context = rag(question, n_chunks=4)
answer_dict[question] = {
'uuid': uuid,
'ref_answer': row['answer'],
'gen_answer': answer,
'context': context
}
prediction_df.loc[:, 'gen_answer'] = prediction_df['question'].apply(lambda q: answer_dict[q]['gen_answer'])
prediction_df.loc[:, 'context'] = prediction_df['question'].apply(lambda q: answer_dict[q]['context'])
prediction_df.sample(5)
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈