如何用LangChain调用OpenRouter中的免费大模型来做一个翻译任务

大家好,本篇内容主要基于LangChain的官方基本教程(https://python.langchain.com/v0.2/docs/tutorials/llm_chain/),展示了如何使用LangChain,通过OpenRouter调用免费大模型,来让AI完成一个简单的翻译任务。

先放整体代码如下

from langchain_openai import ChatOpenAI      model = ChatOpenAI(       base_url="https://openrouter.ai/api/v1",       api_key="你的api key",       model="qwen/qwen-2-7b-instruct:free",   )      from langchain_core.messages import HumanMessage, SystemMessage      messages = [       SystemMessage(content="Translate the following from English into Chinese"),       HumanMessage(content="hi!"),   ]      from langchain_core.output_parsers import StrOutputParser      parser = StrOutputParser()   result = model.invoke(messages)   parser.invoke(result)   

由于作者真萌新,且非程序员,有些编程术语、表述不够准确的请多见谅,能get到意思就行,欢迎大佬留言指正,帮助进步。

1.关于开发环境配置

强推 Anaconda

首先,建议使用Anaconda Navigator来配置开发环境。

大白话地说,在编程过程中你会安装很多很多的包、库,各种教程会让你pip install 这个那个,就很容易乱。

而Anaconda Navigator作为一个有图形界面的工具,可以帮助我们学会为不同的项目创建相互隔离的开发环境,同时方便你对特定环境中已安装的包进行管理,最大程度地避免了乱七八糟的版本混乱,导致代码运行失败的问题(血泪教训)。

这是下载地址:

https://www.anaconda.com/download/success

这是基本教程:

https://docs.anaconda.com/navigator/getting-started/

Langchain的环境配置

装好Anaconda Navigator之后,注意严格按照教程,在你选定的开发环境中,通过终端安装LangChain的包。注意这时候就不是pip install了,而需要运行:

conda install langchain -c conda-forge   

还需要安装langchain-openai,它是用来调用模型的。

conda install conda-forge::langchain-openai   

btw,你可以在这个网站(https://anaconda.org/)中查找任何你想通过conda安装的包的具体指令。

2.选择模型

环境配置好了之后,就可以正式进入编(复制)程(粘贴)环节。

该在哪写代码?

开始之前,先强烈建议使用jupyter notebook写代码(因为官方教程就是这么建议的),它可以实现让代码块一块一块地run,这样哪里出问题了一目了然,也非常方便调整代码块的前后顺序。

你可以直接在Anaconda Navigator的Home页找到它。

强推OpenRouter

接下来真正进入编程环节。首先,选定你想用的大模型(LLMs),除了OpenAI的模型外,LangChain目前还能直接支持Anthropic、Google、MistralAI等公司的主流模型。

但我真的非常建议使用OpenRouter来调用模型,一是方便,二是不需要魔法。(https://openrouter.ai/)

OpenRouter可以理解成一个LLMs的超市,它能提供几乎市面上所有LLMs的服务,包括各种免费的开源模型。

以下是在LangChain中通过OpenRouter调用指定模型的代码:

from langchain_openai import ChatOpenAI      model = ChatOpenAI(       base_url="https://openrouter.ai/api/v1",       api_key="你的api key",       model="qwen/qwen-2-7b-instruct:free",   )   

上述代码实现了通过OpenRouter来调用通义千问的开源模型的效果,具体model的值可以在OpenRouter上获取,搜free会出来一大堆。

注意,这里教程直接使用的是ChatModels(可以看到引入的模块的名字是ChatOpenAI),也就是说,现在我们要让大模型完成的是“对话”任务。

3.设定任务信息

因为是对话任务,我们需要先开口。

from langchain_core.messages import HumanMessage, SystemMessage      messages = [       SystemMessage(content="Translate the following from English into Chinese"),       HumanMessage(content="hi!"),   ]   

上述代码就是我们对模型说的话:

SystemMessage函数的效果就是提供一个类似于设定的prompt,你可以在这里设定模型的任务、身份、背景等等

HumanMessage函数提供的是我们人类对模型说的话,模型在获得这个信息之后,会根据SystemMessage的设定来采取行动。

这里可以看到,我们在SystemMessage中把任务指定为了“translate”(英翻中)。

4.模型处理信息

model.invoke(messages)   

这段代码的意思就是用我们前面选好的模型,通过invoke方法来对我们说的话进行处理。如果把这个处理完的对象print出来,其实是一个AIMessage,里面包含了模型对我们的回复,大概是这样的感觉:

AIMessage(content='你好!', response_metadata={'token_usage': {'completion_tokens': 3, 'prompt_tokens': 20, 'total_tokens': 23}, 'model_name': 'qwen/qwen-2-7b-instruct:free', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-fc5d744c88-966615-4845b-a555c7-425444562c5-0')   

可以看出,模型其实已经完成它的翻译任务了,即“你好!”,但为了便于阅读,让对话更像对话 ,我们还需要对模型的回答再做一步处理,剔出我们不需要的信息。

5.提取回复信息

from langchain_core.output_parsers import StrOutputParser      parser = StrOutputParser()   result = model.invoke(messages)   parser.invoke(result)   

上述代码引用了一个StrOutputParser函数,它可以把AIMessage中我们真正需要的字符信息(你好)提取出来。

至此,一个简单的AI翻译任务就完成了。

6.Chain起来

但有趣的地方还没有结束。

LangChain为什么叫Chain,就是因为它有一个很有趣的特性:你可以使用管道符|把定义好的各种组件chain起来,然后随便调用。

以上面的代码为例,我们可以做一个模型调用与输出的chain,这样可以固定模型与输出要求方面的设定,只需要关注你要传给模型什么message就行了。

chain = model | parser   chain.invoke(messages)   

这样做有什么好处呢,目前我还没有深入研究,但是我理解,比如我们可以针对任务的不同步骤,选择不同,但最适合的model和parser要求,来做很多个chain,由此形成一个多模型参与的workflow,这个思路,貌似也就是目前AI Agents开发方面的基本原理。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享]👈

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享👈

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值