前几天,Perplexity 的联创及产品主管 Johnny Ho 接受知名播客采访,谈了他们如何用 AI 进行团队协作以及设计产品。
这波采访给出的信息量非常大,妥妥的未来职场范本。
我看了采访稿,整理了一些信息,期望能给今天的职场人们提供一些参考。
开始之前,先介绍一下 Perplexity,以防有同学还不熟悉。
Perplexity 是 2022 年 8 月创建的真 AI-Native 公司,专注于通过 AI 优化搜索,是今天所有 AI 搜索类产品的鼻祖。上线不到 2 年时间已经拥有数千万用户、年订阅收入超过 2000 万美金。是黄仁勋每天都要用的 AI 工具。
下面是我从采访稿中摘录与职场人团队协作、产品设计相关的内容,翻译过程中增加了一些我的思考,如果你想看原文可以点击文末的阅读原文。
AI 优先
Perplexity 团队几乎在各项工作之前都会先问 AI,包括他们整个公司的建设过程。
公司建议所有员工在打扰其他同事之前,先像 AI 询问解决方案,以此来减少协作成本。
“AI 可以为每一个人提供合理的起点,以便可以自己独立完成。”
实际上,我今天的大部分工作也是这样开展了。
在遇到我自己不会处理的工作时,我不会直接把“难题”交给 AI,因为结果比不做还糟糕。
但我会向 AI 说:“我现在遇到了一个问题,有没有什么方法论或知识框架是用来解决这类问题的么?”
大部分时候,AI 会给出不少于 5 个相关方法论,这些信息可以让我在主动搜索相关解决方案的时候更快速的得到答案。
我相信,这样的工作方式,会被越来越多的人使用。
这意味着,很多工作中的“问询型协作”会大幅减少,这带来的工作效率提升至少会是 2 倍。
AI 产品经理
Perplexity 团队目前有 50 人,但专职的产品经理只有 2 个!
Perplexity 的典型项目只有 1-2 个人,最困难的项目也只有 3 个人完成。
他们的 Discover Daily 播客产品,只有一个人负责,并且这个人是品牌设计师,整个产品的设计和实现过程没有 PM 参与。
Discover Daily播客产品
Perplexity 的产品经理主要在负责许多分支方向的艰难决策和更复杂的项目。他们需要做大量的用例研究,以确定哪些设计被优先采用。
Perplexity 对产品经理这个岗位的要求,与国内目前产品经理们的现状完全不同。
他们不需要产品经理具备“协调”“对齐”之类的技能,在他们看来,AI 时代这些能力不重要了。他们更希望产品经理能够专注于 IC 工作(个人贡献)。
“如果要我猜的话,具有产品品味的技术 PM 或工程师将成为公司中最有价值的人。”在 Johnny Ho 看来,这些人能够直接参与产品开发,而不是仅仅管理流程或领导团队。
“大头兵”肯定是 AI 时代最吃香的人。
团队组织与结构:
Perplexity 采用了一种被称为“黏菌”的团队组织方式,目标是围绕最小化“协调阻力”来构建团队。
下面这句 Johnny Ho 的原话非常棒,我直接翻译摘录:
随着规模增加,协调成本(由不确定性和分歧引起)增加,增加管理人员并不能改善事情。
人们的激励措施变得不一致。人们往往对他们的经理撒谎,经理对他们的经理撒谎。
如果你想和组织的另一部分的人交谈,你必须上升两级,然后下降两级,沿途问每个人。
就像前面对产品经理的招聘要求一样,Perplexity 尽量不雇佣那些擅长“管理”的人,而是能独立完成工作的“大头兵”。
Johnny Ho 认为今天的 AI 已经很强了,所有人在遇到问题时,都可以借助 AI 使用“橡皮鸭调试”来解决。
“橡皮鸭调试”(Rubber Duck Debugging)是一种流行的编程调试方法,它源自于一个概念:当你在编程时遇到一个问题,你可以尝试向一个橡皮鸭(或其他任何无生命的物体)解释你的代码逻辑。在这个过程中,你可能会发现自己代码中的错误或逻辑漏洞。
这种方法之所以有效,是因为:
-
清晰表述:当你尝试向别人(即使是一个无生命的物体)解释你的代码时,你需要清晰地表述你的逻辑,这有助于你更深入地理解问题所在。
-
发现问题:在解释的过程中,你可能会意识到代码中的某些部分与你的解释不符,从而发现潜在的错误。
-
简化问题:通过向一个简单的听众(如橡皮鸭)解释,你可能会简化问题,从而更容易找到解决方案。
你会发现,这个向“橡皮鸭”解释问题的方式,跟我们让 AI 帮我解决问题的要求是一样的。
“大头兵”肯定是 AI 时代最吃香的人。+1
项目协作和汇报
在确定核心目标和高层设计之后,团队尽量在决策上去中心化。
在每个项目开始时,有一个快速的启动以对齐。任何项目的第一步是尽可能将其分解为并行任务,以减少协调问题。
Johnny Ho 鼓励同事尽可能并行工作,每个人都不应该等待其他人解除卡点。
理想情况下,设计、前端和后端应该同时在同一个项目上工作。
Perplexity 现在有一个项目团队,所有四个人可以并行工作,但是在传统公司项目里,成员可能需要等设计或模型搞定了,才能开始干活。
“我们发现,当团队没有 PM 时,团队成员会承担 PM 职责,比如调整范围、做出面向用户的决策,并相信自己的品味。”
Johnny Ho 没有说他们那个四个人可以并行工作的项目是什么,从他上面这句话猜测,能实现工作真正的“并行”,大概率是每个人都在向上下延伸,处理其他岗位的工作内容。
“大头兵”肯定是 AI 时代最吃香的人。+2
职场人启发
我从去年深度使用 AI 来处理日常工作开始,就愈发感受到,未来职场的岗位边界会被 AI 消磨掉。
只要你花一些时间探索会发现,你大部分的日常工作都可以在 AI 的协助下以 10%-50% 的时间完成。
以及,很多以前你以为“高不可及”的工作内容,在你了解了这项工作的方法和要求后,是可以直接指导 AI 来具体执行的。
比如文案写作、编程以及美工和设计,甚至在你得到了一个好的内容创作方法论后,可以让 AI 写出比专业的文案更好的内容。
更少的工作耗时和更低的岗位门槛,(加上更无良的资本家),会要求每一个职场人成为「全知职全能」的“大头兵”。
今天你能使用 AI 协助工作会是求职市场的加分项,但未来它会变成必选项。
就像今天每个职场人必须会用电脑一样。
另外一个方面,“会用 AI”和“善用 AI”是两个概念。
就像你今天会用电脑处理基本工作,但总有人乐于研究各种效率工具,能更快的干完手头的工作。
在 AI 时代,你能发挥多大价值,取决于你的见识。
你用“爆款文案”来要求 AI 帮你创作内容,而我可以使用“二极管标题法”、“文案 GPS 目标大纲”、“峰终体验”、“心理账户”等方法论来指导 AI 工作。
使用GPS大纲写的文案
这些方法论,在过去大家“肚子里的墨水”差不多的时候,知道与不知道没啥区别。但有了 AI 以后,这些“公式”就可以让 AI 发挥更大的价值。
当然,这一切的前提,都是你对 AI 有了相对清晰和正确的认知。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享]👈
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享👈