DeepSeek 太卡了?5 种方式快速接入DeepSeek!微软英伟达Perplexity等“偷偷”接入 R1!

DeepSeek 最近太卡了,又非常想用怎么办?快来“白嫖”微软、英伟达和亚马逊等部署在自己服务器的全量 DeepSeek-R1 模型!真香!

最近 DeepSeek 可谓是“泼天的流量”,不仅全球的用户涌入,而且来自各地的攻击也让服务器不堪重负,甚至流传出了 DeepSeek3 天的流量约等于整个欧洲互联网三天的流量总和,引发我们的红客誓死捍卫 DeepSeek 的桥段。

甚至

DeepSeek 官网服务太卡了怎么办?API 响应慢怎么办?

别着急,AI 界真相定律再次生效,“贼喊捉贼”的微软,率先将 DeepSeek部署在自家的 Azure 服务上,还有英伟达和亚马逊,都“羡慕”这波流量。

英伟达也在自己的 NIM 服务上部署了全量参数 671B 的 DeepSeek-R1 模型。

下面我们详细介绍如何使用5 种其他公司部署的 DeepSeek-R1 服务,得益于 DeepSeek 的开源政策,R1 的服务体验目前来说非常一致。

1、英伟达 NIM

登录:https://build.nvidia.com/explore/discover

直接点解 DeepSeek-R1 即可体验

创建账户登录后,即可创建 API 体验 DeepSeek-R1 的服务。(不过在我测试的时候,突然变得很卡,真是’富贵的流量啊”)

2、微软 Azure

登录:

https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account?icid=payg

注册登录 Azure 后,可以在 Model Catalog 中选择 DeepSeek-R1 来体验。

3、Perplexity 上直接使用

打开 Perplexity 直接使用。

4、Windsurf 直接白嫖

Windsurf 是一个编程 IDE,但是现在他们动作快,已经可以用上 DeepSeek-R1 了

5、Cerebras

Cerebras虽然模型部署的 70B 但是号称比 GPU 的部署快了 57 倍。

而且比 o1-mini 还要聪明,这是真的香!

5、亚马逊 AWS

登录:

https://aws.amazon.com/cn/blogs/machine-learning/deploy-deepseek-r1-distilled-llama-models-with-amazon-bedrock-custom-model-import/

可以看到,DeepSeek-R1 现在各家真的是又怕又爱。

但是这泼天的流量又不想错过,真的就是真香定律了。

目前DeepSeek-API 平台服务依然是 503 状态。

想要体验 DeepSeek 的朋友们,可以临时用以上5 种方式救急。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 关于 DeepSeek R1 和 NVIDIA 显卡的技术信息 #### 兼容性和配置要求 DeepSeek R1 展现出了对硬件资源的有效利用,尤其是在降低成本方面取得了显著成就。在训练过程中,使用了 2048 个英伟达 H800 GPU 完成了具有 6710 亿参数的大规模模型 DeepSeek-V3 的训练工作[^1]。这表明 DeepSeek R1 对特定型号的 NVIDIA GPU 如 H800 存在良好的支持。 对于具体的兼容性列表和技术规格文档,官方通常会提供详细的指南来帮助用户了解哪些硬件能够被有效支持以及最佳实践建议。虽然具体到每一款NVIDIA显卡的支持情况可能未在此提及,但从上述实例可以推测,H系列以及其他高端计算型GPU很可能是受支持的对象之一。 #### 技术规格概述 考虑到 DeepSeek R1 是专为高效能运算设计的产品,其技术规格应当包括但不限于以下几个方面: - **处理器需求**:由于涉及到大量并行处理任务,推荐采用多核心CPU架构; - **内存容量**:为了容纳庞大的数据集和中间结果缓存,系统应配备充足的RAM; - **存储设备**:高速SSD用于加速读写操作,特别是当面对海量的数据交换时; - **网络连接**:稳定可靠的千兆及以上级别的网卡确保分布式环境下的通信效率; 值得注意的是,尽管这里提到了一些常见的考量因素,但对于确切的技术细节还是应该参照产品手册或官方网站获取最权威的信息。 ```bash # 假设这是安装脚本的一部分,展示如何设置环境变量指向正确的库路径 export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值