近年来,零售行业在数字化、技术革新、经济波动及消费者需求多变的挑战下,展现出强大的适应性和创新力。AI技术的深度融合,正引领零售、电商、教育等领域,尤其是零售业步入一个生产力飞跃、客户至上的全新时代。企业亟需挖掘客户与产品数据的潜力,利用统一的知识管理平台与差异化战略,以稳固并扩大其客户群。
1. 大模型时代:零售消费企业的数智化制胜之道
1.1 存量市场下的差异化竞争
随着"流量红利"的逐渐消逝及各种成本的持续上升,零售市场正步入一个激烈的存量竞争阶段。在此背景下,企业不仅要积极拓展多元化的营销渠道与触点,更需深化上下游的精细化管理,力求在降低成本的同时提升效率。面对经济环境的不确定性,消费者愈发偏爱那些质优价低的商品,促使企业重新审视并聚焦于商品运营的核心价值,以用户为中心,通过精细统一化管理商品信息并深入挖掘用户需求,来实现更精准的市场定位与服务。
1.2 AI大模型与生成式AI:零售增长的新引擎
据英伟达全球调查,69%的受访者认为AI对年收入增长有贡献,72%的人认为AI降低了运营成本。特别是生成式AI,作为AI的重要分支,正受到零售企业的广泛关注。
数据来源:《2024 年零售与消费品行业 AI 现状与趋势》
据麦肯锡报告,生成式AI每年有望为零售和CPG行业带来4000-6600亿美元的潜在影响。如何利用AI赋能零售行业知识管理,特别是提升零售商对商品优势的理解与转化能力,成为关键。[HelpLook AI知识库]恰为零售行业应用场景提供了新的解决方案。
2. 如何构建双重客服体系,重塑零售行业新生态
2.1 对外提高零售客户满意度
过去,客服工作的重点主要集中在直接服务于C端消费者上。然而,在零售行业后端复杂且庞大的上下游产业链,涵盖经销商、门店等多个关键环节,其运营效率同样对用户体验产生着深远的直接影响。诸如物流配送的时效性以及线下门店所提供的服务质量等,都是决定消费者满意度不可或缺的重要因素。
2.2 对内沉淀企业内部知识资产
为提升整体服务,零售企业需细化客户服务链路,对外洞察客户需求,提供个性化服务;对内则需高效管理内部知识资产。HelpLook AI知识库助力企业轻松上传、整理并查询内部商品数据表格、文档资料,实现知识资产的统一便捷管理。
·快速整理商品数据信息: HelpLook AI知识库支持批量导入多种格式文档,如.docx、markdown、.xlsx、.pdf等,并按商品属性或应用场景分类。通过清晰的分类与标签体系,信息查找变得轻而易举。同时支持一键导出多种格式,方便企业分享或备份。可以很好地整理商品数据,包括价格、规格、数量、卖点等信息,为零售商或者合作企业建立一个AI在线培训系统。
·AI搜索助力洞察能力提升: HelpLook集成GPT-3.5、GPT-4o-mini、GPT-4-Turbo等常见**AI大模型**。能理解用户需求,提供精准搜索结果,还能根据用户行为与偏好,智能推荐相关知识内容,帮助企业快速识别问题,洞察客户真实意图,预见商业机会,降低人力成本。
·轻松集成企业应用系统: 在网站嵌入HelpLook AI智能助手,实现24/7小时自动回复,知识沉淀自动化、智能化,形成完整闭环。同时支持自定义Prompt和配置API Key,打造企业专属的AI问答机器人,并轻松集成至网站、APP、小程序等第三方应用中。
3. 行业实践:HelpLook赋能零售企业有效降低客服压力
以HelpLook客户——海外华人食品批发超市为例,该公司通过用HelpLook搭建AI帮助中心,训练AI问答客服机器人,成功降低了人工坐席在线回复压力,提高了零售商采购效率和满意度。零售商能够自助获取最新产品报价单、产品种类等信息,无需人工介入,从而提升了整体运营效率。
大模型与人工智能正成为零售和消费企业在存量市场竞争中保持竞争力的关键工具。HelpLook通过持续创新与技术融合,构建一个以客户为中心的AI零售新方式,不仅提升了零售商的购物体验,还优化了企业自己内部的人员运营效率,实现了个性化服务与精准营销。[快来免费体验HelpLook,开启您的零售增长新篇章!]
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓