ChatGPT的终极指南概要

ChatGPT的终极指南概要

[
Prompt Format(提示格式)

是一种用于指导ChatGPT生成特定类型回答的模板。它通常包括以下几个部分:

  1. 角色(Role):定义AI模型在Prompt中所扮演的角色,例如专家、顾问、教师等。
  2. 任务(Task):明确指定AI模型需要完成的具体任务,如回答问题、提供建议或生成特定类型的文本。
  3. 要求(Requirement):描述任务完成的具体要求和限制,例如字数限制、风格要求等。
  4. 提示(Cue):提供额外的背景信息或上下文,帮助AI更好地理解和执行任务。

一个结构化的Prompt示例可能是:

Assume the persona of [Expert Persona], [verb] [Format&Length] [objective]. The output should include relevant [data]. The writing style is [Tone of Voice]. Tailored towards [Audience]

  • [Expert Persona]: 角色,比如“经济学家”、“营养师”等。
  • [verb]: 动作,即这个专家要执行的任务,比如“解释”、“列出”、“比较”等。
  • [Format&Length]: 格式和长度,比如“500字的文章”、“10条列表”等。
  • [objective]: 目标,即任务的具体目标或要回答的问题。
  • [data]: 数据,即输出中应包含的信息。
  • [Tone of Voice]: 语气,比如“正式”、“幽默”、“友好”等。
  • [Audience]: 受众,即内容面向的读者或听众。

使用这样的格式可以帮助用户获得更准确、更相关的回答。通过明确这些参数,ChatGPT能够更精确地理解用户的需求,并生成符合预期的输出。

Terminology(术语):

  • Input: 用户给ChatGPT的文本或命令。
  • Output: ChatGPT给用户的回应。
  • AI Models: 使用不同训练方法的AI平台。
  • Prompts: 给ChatGPT的问题或输入类型。
  • LLM: 大型语言模型(AI Learning ChatGPT)。
  • Prompt Engineering: 调整提示以引导ChatGPT的生成。
  • Generative AI: 创造新内容或数据的AI。
  • OpenAI: 开发和维护ChatGPT的组织。
  • Training: 用数据训练ChatGPT以改进其回应。

Prompting Techniques(提示技巧)

是一系列用于优化ChatGPT输出的方法。以下是每一项技巧的详细描述:

  1. Open-Ended(开放式提示):开放式提示不限制回答的范围或结构,允许AI自由发挥,生成更多样化的内容。例如,你可以问:“你能告诉我关于宇宙的奥秘吗?”

  2. Instruction(指令式提示):指令式提示提供明确的指示,要求AI按照特定的步骤或格式回答。例如:“请列出五种减少塑料污染的方法。”

  3. Multiple Choice(多项选择提示):多项选择提示提供几个选项,并要求AI选择其中一个或几个进行回答。例如:“在以下选项中,哪一个是造成全球变暖的主要原因?A) 火山活动 B) 汽车尾气 C) 太阳能量输出增加”

  4. Fill-in-the-Blank(填空提示):填空提示提供一段不完整的文本,并要求AI填补空白部分。例如:“技术创新为______带来了巨大的机遇。”

  5. Binary(二元选择提示):二元选择提示要求AI在两个选项之间做出选择或比较。例如:“你认为是先有鸡还是先有蛋?”

  6. Direction(方向性提示):方向性提示要求AI按照特定的方向或角度来回答问题。例如:“从经济学的角度解释为什么最低工资的提高可能会造成失业。”

  7. Role-Playing(角色扮演提示):角色扮演提示要求AI扮演一个特定的角色或身份来回答问题。例如:“假设你是一位医生,你会如何向病人解释糖尿病的风险因素?”

  8. Interactive(互动式提示):互动式提示鼓励AI与用户进行对话或交互,以模拟真实场景。例如:“我想计划一次度假,请推荐一些适合家庭的目的地。”

  9. Dialogue(对话式提示):对话式提示要求AI参与到一个虚构的对话中,生成对话内容。例如:“生成一段关于气候变化的辩论,正方认为是人类活动造成的,反方认为是自然现象。”

Writing Styles(写作风格)

是指在与ChatGPT等AI对话时,可以指导其采用的不同类型的文本表达方式。以下是每一项写作风格的详细描述:

  1. Explanation(解释性写作):解释性写作风格旨在清晰、详细地阐述某个主题或概念。它通常用于教育或指导,目的是让读者能够理解复杂的概念。例如:“解释什么是光合作用。”

  2. Opinion(观点性写作):观点性写作风格表达个人的看法、判断或情感。这种风格主观性强,通常包含个人评论或论证。例如:“你对加密货币的未来发展有什么看法?”

  3. Formal(正式写作):正式写作风格适用于官方文件、学术研究和专业环境。它使用正式的语言、结构和术语。例如:“请撰写一份关于气候变化对经济影响的正式报告。”

  4. Personal(个人化写作):个人化写作风格反映作者的个性和情感,通常用于博客、个人故事和日记。它更加非正式和亲切。例如:“给我讲一个关于你个人旅行经历的故事。”

  5. Professional(专业写作):专业写作风格用于展示专业知识和经验,通常在行业分析、专业建议或技术文档中使用。它注重准确性和权威性。例如:“为我们的产品写一份专业的市场分析报告。”

  6. Academic(学术写作):学术写作风格用于研究论文、学术文章和学术论文,强调客观性、引用和证据。它遵循严格的格式和引用规则。例如:“撰写一篇关于人工智能伦理问题的学术论文。”

  7. Descriptive(描述性写作):描述性写作风格通过详细的描绘来创建图像或场景,通常用于文学、旅游写作和产品描述。它使用感官语言来吸引读者。例如:“描述一个宁静的夏日午后在海边的场景。”

  8. Persuasive(说服性写作):说服性写作风格旨在影响读者的观点或行为,通常用于广告、演讲和社论。它使用逻辑论证和情感诉求来达到目的。例如:“写一篇说服人们减少塑料使用的社论。”

  9. Inspirational(启发性写作):启发性写作风格旨在激励和鼓舞读者,通常包含励志故事、名言或个人成长经验。它旨在激发读者的内在动力。例如:“分享一个启发你克服困难的个人经历。”

  10. Analytical(分析性写作):分析性写作风格涉及对信息的批判性思考和评估,通常用于评论、分析报告和研究。它注重逻辑推理和证据支持。例如:“分析当前经济形势对股市的影响。”

Jailbreaks(越狱技巧)

是指绕过ChatGPT等AI模型内置的安全限制,使其能够生成在正常情况下被禁止的内容。以下是每一项越狱技巧的详细描述:

  1. Jailbreakchat:这是一种越狱ChatGPT的方法,通过特定的提示或命令让模型生成它本不应该生成的内容。

  2. Roleplay Jailbreaks:通过角色扮演的方式进行越狱,例如让用户和模型进行一个虚构对话,在对话中让模型扮演一个特定的角色,从而绕过一些限制。

  3. Engineering Mode:类似于将ChatGPT置于一个工程模式下,可能允许访问和调整一些通常不公开的设置或功能。

  4. A Dream within a Dream:可能是一种通过多层次梦境模拟来绕过模型限制的方法,例如通过故事中嵌套故事的方式来探索或生成某些内容。

  5. An LVM within an LLM:在大型语言模型(LLM)中嵌入一个逻辑向量机器(LVM),可能是一种技术手段,用于增强模型的功能或绕过限制。

  6. Neural Network Translator:利用神经网络作为翻译器来进行越狱,可能涉及到将请求转换为模型能够接受的形式,从而生成原本受限的内容。

  7. Token System:代币系统可能是指通过模拟或修改模型的内部代币系统来绕过限制,代币在模型中通常用于表示和处理语言单元。

  8. Sudo Mode:类似于在计算机中使用sudo命令获得超级用户权限,Sudo模式可能是一种让用户获得更高权限的越狱技巧。

  9. Neural Network Translator:这可能是指模拟一个神经网络翻译器,通过它来转换和生成内容,从而绕过模型的某些限制。

  10. Token System:可能是指通过操作模型内部的代币系统来进行越狱,代币是模型用来处理和生成文本的基本单位。

请注意,这些越狱技巧可能会违反模型的使用政策和服务条款,可能会导致不安全或不适当的内容生成,因此在使用时应格外小心,并考虑到潜在的道德和法律风险。此外,随着模型的更新和安全措施的加强,这些技巧可能会随时失效。

Avoiding Plagiarism(避免抄袭)

包含了一系列工具和方法,用于帮助用户确保他们的内容是原创的,并没有侵犯他人的版权。以下是每一项工具和方法的详细介绍:

  1. Methods of Detection(检测方法)

    • 抄袭检测通常包括人工检测和自动化检测。人工检测依赖于专家的经验和判断,而自动化检测则使用计算机程序对文本进行分析和比对,以识别重复或相似的内容。
  2. OpenAI Text Classifier(OpenAI文本分类器)

    • 这是一个工具,可能用于识别文本数据的来源,帮助区分机器生成的文本和人类写作的文本。
  3. GPTZero(GPTZero检测工具)

    • GPTZero 是一个专门用来检测机器生成文本的工具,尤其是那些由类似ChatGPT这样的大型语言模型生成的内容。
  4. The Watermark Method(水印方法)

    • 水印方法可能指的是在文本中嵌入独特的标记或代码,以便追踪和识别内容的来源。
  5. GPTMinus1

    • GPTMinus1 可能是一个检测工具,用于识别和处理抄袭内容,尽管具体细节不明确。
  6. DetectGPT

    • DetectGPT 是一个检测工具,专门用来识别由GPT(生成式预训练转换器)模型生成的文本。
  7. The Raven

    • The Raven 可能是一个抄袭检测工具或服务,用于扫描文档中的抄袭行为。
  8. How to Trick Detection(如何欺骗检测)

    • 这可能包含一系列技巧,教导用户如何在不违反道德和法律的前提下,通过改写和引用来避免被检测工具识别为抄袭。
  9. Quillbot Paraphraser(Quillbot改写器)

    • Quillbot 是一个在线改写和摘要工具,可以帮助用户用自己的话重述内容,以避免抄袭。
  10. TrickMeNotAI

    • TrickMeNotAI 可能是一个检测工具,用于识别和防范AI生成的抄袭内容。
  11. Adjusting writing style(调整写作风格)

    • 调整写作风格是一种避免抄袭的方法,通过改变语言、句式和表达方式来确保内容的原创性。
  12. Switching up tone(改变语调)

    • 改变语调涉及到调整文本的情绪和正式程度,这可以帮助确保内容的原创性。
  13. Rewriting parts(重写部分内容)

    • 重写部分内容意味着对原文的某些部分进行改写,以确保不会直接复制他人的话。
  14. Paraphrasing(改写)

    • 改写是用自己的话重述原文内容的过程,这是避免抄袭的一种常见方法。

使用这些工具和方法,用户可以确保他们的内容是原创的,并且在使用他人的想法或文本时给予适当的认可。记住,抄袭不仅损害了原作者的权益,也破坏了个人的学术和职业信誉。


在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值