最近,OpenAI 对 Agent SDK 进行了一次引人瞩目的重大更新:正式支持了 MCP(Model Context Protocol)服务,并开放了相关代码。开源地址见文末。
MCP介绍
很多朋友或许对这个新概念感到陌生,其实 MCP 可以看作是大模型时代的“USB 接口”,能够以统一标准连接各种外部工具,例如网络搜索、专业分析、本地查询、网络追踪等,由此为 Agent 解锁了无限的功能扩展空间。
MCP 的核心理念基于三个关键要素:模型、上下文和协议。
模型是系统进行数据处理和决策的核心逻辑,决定了系统如何“思考”。
上下文则为模型提供运行环境,使其能够根据实时信息动态调整输出。
协议则是模型与上下文之间沟通的规则,确保数据在多个组件之间可以顺畅且安全地传输。
通过这三者的有机结合,Agent 能够在面对多种复杂应用场景时从容应对。
MCP 为 Agent 带来哪些优势
对开发者来说,MCP 的价值在于可以极大简化复杂智能体的构建过程。
在过去,想要同时实现文件处理、数据库查询和网络爬虫等功能,需要编写或整合大量接口。
而现在只要符合 MCP 的标准,就能将各种工具快速接入 Agent,不再需要对底层逻辑进行大范围修改。
此外,MCP 还带来了一项动态工具发现机制,每次运行 Agent 时,系统都会从 MCP 服务器获取当前可用的工具列表。
这样一来,即使工具发生新增、删除或更新,Agent 也能实时感知并自动适配,大幅提升了开发效率和系统灵活度。
在性能方面,MCP 通过缓存与按需调用的方式实现了高效运行。
Agent 只会在需要时才调用 MCP 服务器,从而降低资源消耗。
对于常用工具,还可利用缓存功能复用数据,进一步减少了重复请求带来的延迟。
这些设计对需要处理海量数据或频繁调用第三方服务的场景来说非常关键。
值得一提的是,MCP 采用了模块化、解耦合的架构设计。
工具的实现细节与 Agent 的核心逻辑相分离,开发者可以独立升级和优化任何一端,而不会影响整个系统的稳定性。
正因如此,OpenAI 联合创始人兼 CEO Sam Altman 对 MCP 大加赞赏,认为其对 Agent 生态的发展意义重大。
MCP的未来发展
随着开源地址正式发布,广大开发者都可以下载并体验这项新技术。
MCP 有助于进一步拓宽 Agent 的应用场景,从金融、教育到医疗等各领域,都能以更加灵活、高效的方式构建各式各样的 AI 系统。
如果说大模型是现在 AI 的核心引擎,那么 MCP 无疑为这个引擎配备了更加开放的扩展接口,让 Agent 可以更快速地应对各类复杂需求。
OpenAI 的这一举措,为智能体技术带来了新的发展机遇。
相信不久之后,依托 MCP 的开源生态,会有更多工具和服务涌现,让大家共同见证 AI 时代的又一次重大跨越。
如果你觉得这篇文章对你有帮助,欢迎点赞、分享给更多朋友!
别忘了关注我,第一时间获取更多前沿AI科技资讯~
欢迎在评论区分享你对MCP技术的看法和见解!
开源地址:https://github.com/openai/openai-agents-python
最后,为大家推荐一份网上疯传的DeepSeek系列教程,全部6个清华+2个北大+浙大+厦大版,都给你打包好,直接领取。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓