程序员转行到大模型开发领域,可以根据个人兴趣和职业规划选择不同的方向。以下是几个推荐的方向、推荐原因以及学习路线:
1. 自然语言处理(NLP)工程师
推荐原因:
- NLP是AI大模型应用最广泛的领域之一,随着聊天机器人、机器翻译、情感分析等技术的普及,市场需求旺盛。
- 大模型如BERT、GPT等在NLP任务中表现出色,具备强大的文本理解和生成能力。
学习路线:
- 基础知识:掌握Python编程,熟悉常用库(如NumPy、Pandas),了解线性代数、概率统计、微积分。
- NLP基础:学习分词、词性标注、命名实体识别等基本概念和技术。
- 深度学习:深入理解神经网络结构,尤其是Transformer架构,并实践使用TensorFlow或PyTorch。
- 高级技术:研究预训练模型(如BERT、RoBERTa)、注意力机制、Prompt Engineering等。
2. 计算机视觉(CV)工程师
推荐原因:
- CV涉及图像识别、物体检测、视频分析等多个应用场景,在安防监控、医疗影像等领域有着广泛应用。
- 随着多模态大模型的发展,CV与NLP结合的应用场景越来越多,例如图文匹配、视频字幕生成等。
学习路线:
- 基础知识:同上。
- CV基础:学习图像处理、特征提取、卷积神经网络(CNN)等基础知识。
- 深度学习:深入理解ResNet、EfficientNet等经典CV模型的工作原理及其实现方法。
- 项目实践:参与开源项目或企业实习,积累实际项目经验,尝试实现图像分类、目标检测等任务。
3. 大模型算法工程师
推荐原因:
- 算法工程师负责设计、优化和部署大模型,直接参与到模型的研发过程中,对于追求技术创新的人来说是非常有吸引力的职业路径。
- 需要解决诸如模型压缩、知识蒸馏等问题,有助于提高模型效率并降低成本。
学习路线:
- 基础知识:同上。
- 算法理论:深入学习机器学习算法,特别是监督学习、无监督学习和强化学习。
- 深度学习框架:熟练使用TensorFlow、PyTorch等框架进行模型开发。
- 前沿技术:关注参数高效微调、稀疏激活模式利用等最新研究成果,探索如何更好地训练大规模模型。
4. 大模型部署工程师
推荐原因:
- 模型一旦训练完成,就需要考虑如何有效地将其部署到生产环境中,确保模型能够在实际业务场景中稳定运行。
- 部署工程师需要具备云计算、容器化技术和分布式系统的知识,这对于保证模型性能至关重要。
学习路线:
- 基础知识:同上。
- 云计算平台:学习AWS、Google Cloud、Azure等云服务平台的操作和AI服务。
- 资源管理:理解Docker、Kubernetes等容器化技术和编排工具,掌握资源调度和管理技巧。
- 推理加速:探索模型剪枝、量化等技术,以减少推理时延并节省计算资源。
总结:
每个方向都有其独特的挑战和发展机遇,程序员可以根据自己的背景和兴趣选择最适合自己的路径。无论选择哪个方向,持续学习最新的技术和保持对行业的敏感度都是非常重要的。此外,积极参与社区活动、贡献开源项目也是提升技能和个人影响力的有效方式。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。