想在 Obsidian 里直接对话 ChatGPT,还能改对话内容?这款 chatgpt-md 插件做到了。不止支持 OpenAI,还能接入 OpenRouter 和本地 Ollama 模型,灵活又好用!
插件介绍
-
• 插件 ID: chatgpt-md
-
• 项目地址: https://github.com/bramses/chatgpt-md
-
• 项目描述: 让 ChatGPT 与 Obsidian 的(几乎)无缝集成。
-
• 支持配置 3 类模型:每个 AI 服务现在在设置和元数据中都有自己的专用 URL 参数
-
• openaiUrl 用于
OpenAI
API -
• openrouterUrl 用于
OpenRouter.ai
-
• ollamaUrl 用于
Ollama
本地模型
-
chatgpt-md 插件演示
上次粉丝留言反馈说不知道怎么使用这个插件,这期专门录屏给大家手把手教学,逐个参数都给你说清楚。
极客工具
,赞1
演示内容
-
1. chatgpt-md 插件配置
-
2. chatgpt-md 插件特点
-
1.
多轮对话
,能在 markdown 里面看到每次对话的内容,且能随时修改对话的内容,这是其他插件不能实现的优势 -
2. 提示词都和模型参数都是在笔记内一站式配置,编辑后执行
infer title
生成标题,体验非常紧凑
;
-
下面这些AI插件,你用了吗?
我在用的Obsidian AI插件 多选
copilot
quickadd-ai assistant
local gpt + ai providers
chatgpt md
smart composer
web viewer
我竟然还没用上AI
投票
AI 服务配置
使用 free_chat_gpt_api 和 openrouter.ai 实现免费使用 AI,如 credit 不够,可在 open_router 中充值付费即可
公益免费的 OpenAI 接口
项目: https://github.com/popjane/free_chatgpt_api
完全免费使用以下勾选模型:
-
• gpt-4o-mini(速度一般,若要体验极速回复,可购买付费 API)
-
• gpt-3.5-turbo-0125
-
• gpt-3.5-turbo-1106
-
• gpt-3.5-turbo
-
• gpt-3.5-turbo-16k
-
• net-gpt-3.5-turbo (可联网搜索模型 - 稳定性稍差)
-
• whisper-1
-
• dall-e-2
点击领取免费的 api key: https://free.v36.cm/github
API URL: https://free.v36.cm
OpenRouter 的免费的聚合 API 接口
服务: https://openrouter.ai
openrouter 提供以下免费的模型使用
模型名称 | 上下文窗口 |
Gemini 2.5 Pro Experimental | 1,000,000 |
Gemini 2.0 Flash Experimental | 1,048,576 |
Gemini 2.0 Flash Thinking Experimental | 40,000 |
LearnLM 1.5 Pro Experimental | 40,960 |
Gemma 3 27B / 12B / 4B / 1B | 各 131,072(部分为 96,000 或 32,768) |
Gemma 2 9B | 8,192 |
🔍 DeepSeek
模型名称 | 上下文窗口 |
DeepSeek V3 0324 / Base | 163,840 |
DeepSeek Chat(旧版) | 163,840 |
R1 / R1 Zero | 163,840 |
R1 Distill Llama 70B | 128,000 |
R1 Distill Qwen 32B / 14B | 16,000 / 64,000 |
🔋 NVIDIA
模型名称 | 上下文窗口 |
Llama 3.1 Nemotron Ultra 253B | 131,072 |
Llama 3.1 Nemotron 70B Instruct | 131,072 |
Llama 3.1 Nemotron Nano 8B | 131,072 |
Llama 3.3 Nemotron Super 49B | 131,072 |
🦙 Meta (Llama 系列)
模型名称 | 上下文窗口 |
Llama 3.3 70B Instruct | 8,000 |
Llama 3.2 Vision 11B | 131,072 |
Llama 3.2 3B / 1B | 20,000 / 131,072 |
Llama 3.1 405B (base) | 64,000 |
Llama 3.1 8B Instruct | 131,072 |
Llama 4 Maverick | 256,000 |
Llama 4 Scout | 512,000 |
🇨🇳 Qwen (阿里)
模型名称 | 上下文窗口 |
Qwen2.5 7B / 72B / 32B Coder | 32,768 |
Qwen2.5 VL 72B / 32B / 7B / 3B | 131,072 / 8,192 / 64,000 / 64,000 |
QwQ 32B / Preview | 40,000 / 16,384 |
结语
无论是实时修改对话记录,随时切换模型,还是用免费 API 薅 GPT-4o 的羊毛,chatgpt-md
插件的设计都精准踩中了知识工作者的刚需。
一边记笔记一边和 AI 深聊,无需切换到网站,免费加持,省心又省钱,推荐一试。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓