🔥「垂直领域大模型落地难?逻辑推理总出错?这个来自OpenSPG的开源框架,让专业领域知识服务变得像搭积木一样简单!」
项目介绍
KAG
是基于OpenSPG知识引擎和LLM的专业领域知识服务框架,专为解决传统RAG方案在垂直领域应用的三大痛点而生:
-
向量检索的"似是而非"问题(语义相似但逻辑错误)
-
开放信息抽取的"噪声污染"问题
-
复杂场景下的多跳推理难题
最新版本已支持:
✅ 领域知识注入(金融/医疗/法律等)
✅ 可视化图谱分析查询
✅ 混合推理引擎(逻辑+语义+数值)
✅ 多模态知识管理(文本/表格/图谱)
核心功能亮点
逻辑推理问答
突破传统QA系统的关键词匹配模式,支持:
-
多条件组合推理("找出近三年营收增长超20%但负债率低于60%的上市公司")
-
时序推理("某患者先出现A症状后出现B症状的可能病因")
-
矛盾检测("合同条款X与行业规范Y是否存在冲突")
知识对齐黑科技
通过概念语义推理实现:
-
自动消歧("苹果->水果/公司"智能判断)
-
术语对齐("心肌梗塞=心梗=心肌梗死"自动关联)
-
知识纠错(检测并修正错误事实陈述)
多模态知识管家
-
文档 ↔ 知识图谱双向索引
-
支持Word/PDF/Excel多格式解析
-
专家经验结构化(通过Schema约束)
混合推理引擎
# 问题求解过程示例
question = "某新能源车企近三年研发投入是否超过行业平均水平?"
求解步骤:
1. 检索→获取企业研发数据
2. 计算→行业均值计算
3. 推理→趋势对比分析
4. 生成→自然语言结论
企业级知识安全
-
私有化部署方案
-
知识访问权限控制
-
审计日志追踪
-
数据加密存储
技术架构解析
组件 | 核心技术 | 优势特点 |
---|---|---|
kg-builder | LLMFriSPG框架、DIKW模型、多模态抽取 | 兼容结构化/非结构化知识 |
kg-solver | 逻辑符号引导、混合运算符(规划/推理/检索) | 支持四种推理模式无缝切换 |
kag-model | 领域适配微调、知识蒸馏、提示工程优化 | 专业领域效果提升40%+ |
落地场景实测
金融风控场景
用户问:A公司通过多层控股的子公司是否存在同业竞争?
系统执行:
1. 抽取股权结构图谱
2. 分析业务范围重叠度
3. 参照监管规则判断
4. 生成风险评估报告
医疗诊断支持
病历文本 → 信息抽取 → 症状图谱 → 诊断规则 → 推理引擎
法律合同审查
传统RAG:准确率68%(存在条款误解)
KAG方案:准确率92%(逻辑关系精准把握)
与同类方案对比
传统RAG | GraphRAG | KAG | |
---|---|---|---|
推理能力 | ❌ | ⚠️ | ✅ 逻辑+语义 |
知识准确性 | ⚠️ | ❌ | ✅ 双重校验 |
多跳问答 | ❌ | ⚠️ | ✅ 自动链路 |
部署复杂度 | ✅ | ❌ | ✅ 容器化方案 |
领域适配成本 | 高 | 中 | 低 |
快速上手指南
三步部署方案
# 1. 获取部署文件
curl -sSL https://raw.githubusercontent.com/... -o docker-compose.yml
# 2. 启动服务
docker compose -f docker-compose.yml up -d
# 3. 访问系统
浏览器打开 http://127.0.0.1:8887
(默认账号:openspg/openspg@kag)
开发者扩展示例
from kag import KnowledgeBuilder
# 自定义医疗schema
medical_schema = {
"疾病类型": ["症状", "治疗方案", "相关检查"],
"药品": ["适应症", "禁忌症", "相互作用"]
}
builder = KnowledgeBuilder(schema=medical_schema)
builder.add_document("medical_report.docx")
kg = builder.build()
同类项目推荐
1. DeepSeek-R1
-
特点:通用领域对话优化
-
适用:日常问答、内容创作
-
局限:专业领域深度不足
2. LangChain
-
特点:灵活的工作流编排
-
适用:快速原型开发
-
局限:需要自行实现知识管理
3. Neo4j+LLM
-
特点:图数据库深度集成
-
适用:已有知识图谱系统
-
局限:开发维护成本较高
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】