最强开源模型Qwen3发布!你用上了吗?四种方法教你快速上手Qwen3
导读
本文主要内容
-
1. Qwen3有啥模型?跟其他模型有啥区别?
-
2. Ollama/HuggingFace安装和使用Qwen3的教程
-
3. 硅基流动/无问芯穹,免费调用Qwen3的教程
📢 作为阿里巴巴开源新一代通义千问模型 Qwen3 (简称千问 3),性能全面超越 Deepseek-R1、豆包 1.5pro 等国内领先模型,并登顶全球最强开源模型!
(详见官网报道 https://qwenlm.github.io/zh/blog/qwen3/ )
🚀模型亮点
-
1. Qwen 3 系列的所有模型,都是“混合推理模型”(能直接回答,也能先思考再回答)
-
2. 支持119门语言和方言(Qwen2.5只支持 29 种语言)
-
3. 支持 MCP 协议
啥是混合推理?简单来说,就是同时支持两种思考模式:
1. 像DeepSeek-V3 一样:直接回答
2. 像DeepSeek-R1一样:先思考,后回答
Qwen3 模型速览
模型家族展示图如下
从应用角度看,Qwen3提供了全谱系的选择:
-
• Qwen3-0.6B:完美适合手机部署
-
• Qwen3-4B、8B:适合个人PC使用
-
• Qwen3-14B、32B:适合企业本地化部署
-
• 更大的模型:适合云端部署使用
🔗 体验链接
通义网页:https://www.tongyi.com/
Qwen Chat:https://chat.qwen.ai
Qwen Chat界面
【模型下载】
Ollama:https://ollama.com/library/qwen3:8b
Hugging Face:https://huggingface.co/Qwen
ModelScope:https://www.modelscope.cn/models/Qwen
GitHub:https://github.com/QwenLM
【百炼 API 】
https://bailian.console.aliyun.com/?tab=model#/efm/model_experience_center/text?currentTab=textChat&modelId=qwen3-235b-a22b
📢百炼已经提供Qwen3 API服务,8+2个模型,每个模型100万免费tokens!赶紧领取!
下面是使用Qwen3的四种方法,按需跳转。
Ollama安装Qwen3
Qwen3发布后,Ollama第一时间支持了本地部署,8B的模型仅需5.2G空间就能运行。这意味着,普通笔记本电脑也能轻松驾驭强大的AI能力,实现随时随地的AI自由!
到Ollama官网[1]下载安装包
安装命令 ollama run <模型名称>
,如
ollama run qwen3:8b
测试对话
在CherryStudio[2]快速使用 本地的qwen3
测试对话
在提示词中输入“请不要思考”,可关闭思考模式!
ollama下载问题
The model you are attempting to pull requires a newer version of Ollama.
解决方案:升级Ollama
HuggingFace安装Qwen3
安装 huggingface
命令
pip install -U huggingface_hub
测试对话
先安装python包
pip install transformers accelerate
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
粘贴如下代码
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained("./models/Qwen/Qwen3-8B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"./models/Qwen/Qwen3-8B",
trust_remote_code=True,
device_map="auto"# device_map="cpu" #可明确指定使用 CPU
)
# prepare the model input
prompt = "Strawberry单词中有多少个r?"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt") # 移除 .to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1
)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print("回复:", response)
免费调用Qwen3
三步走
-
1. 官网选模型(硅基流动[3]/无问芯穹[4])如:Qwen/Qwen3-235B-A22B
-
2. 创建API-KEY
-
3. 在代码中调用Qwen3
硅基流动调用Qwen3示例
官网注册链接 https://cloud.siliconflow.cn/i/xJvN9Ecu
手机号码注册,薅 2000 万 Tokens!
import requests
url = "https://api.siliconflow.cn/v1/chat/completions"
payload = {
"model": "Qwen/Qwen3-235B-A22B", # 你选的模型
"messages": [
{
"role": "user", # 你扮演的角色是用户
"content": "把大象装进冰箱分成几步" # 你跟大模型对话的内容
}
]
}
headers = {
"Authorization": "Bearer sk-xxxxxx", # 替换为你的Api-key
"Content-Type": "application/json"
}
response = requests.request("POST", url, json=payload, headers=headers)
print(response.text)
回复如下
这是一个经典的脑筋急转弯问题,幽默的答案通常是:
分三步
1. 打开冰箱门
2. 把大象放进去
3. 关上冰箱门
无问芯穹调用Qwen3示例
官网注册链接 https://cloud.infini-ai.com/platform/ai
手机号码注册,邀请即可免费在线体验或API调用,薅 无限 Tokens!
import requests
url = "https://cloud.infini-ai.com/maas/v1/chat/completions"
payload = {
"model": "qwen3-235b-a22b",
"messages": [
{
"role": "user",
"content": "9.11 和 9.8 谁大?"
}
]
}
headers = {
"Content-Type": "application/json",
"Accept": "application/json, text/event-stream, */*",
"Authorization": "Bearer sk-xxxxxx"
}
response = requests.post(url, json=payload, headers=headers)
print(response.json())
回复如下
在比较9.11和9.8的大小时,可以按照以下步骤进行:
1. 比较整数部分: 两数的整数部分均为 9,因此需要进一步比较小数部分。
2. 统一小数位数: 将9.8补零为 9.80(与9.11同为两位小数),方便逐位对比。
3. 比较小数部分: 十分位:9.80的8 > 9.11的1,因此无需继续比较百分位。
结论:9.80 > 9.11。
最终答案: 9.8 更大。
因为虽然9.11的小数部分有两位数字,但小数比较时从高位到低位逐位进行,9.8的十分位(8)大于9.11的十分位(1),所以9.8 > 9.11。
常见误区:
不要误以为小数点后数字位数多或数字本身(如“11”比“8”大)就代表数值更大,小数的大小取决于每一位的数值权重(十分位 > 百分位 > 千分位...)。
以上,是使用Qwen3的四种方法,实践出真知,与君共勉。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】