论文标题:Exploiting Language Power for Time Series Forecasting with Exogenous Variables
论文链接:https://dl.acm.org/doi/10.1145/3696410.3714793
研究背景
传统时间序列预测方法通常只关注目标变量(内生变量),而忽略外部环境中的变量(外生变量),导致预测精度受限。为此,本文提出了ExoLLM,利用大语言模型(LLM)来捕获外生变量的影响。作者设计了一种语言驱动的方法,通过元任务指令(MTI)激活 LLM 的预测能力,并通过多粒度提示(MGP)提取层次化的外生知识。并通过双模态注意力对齐机制(DT²A)弥合文本和时间序列之间的模态差距。在 12 个真实世界数据集上的实验表明,ExoLLM 显著优于现有方法,在长短期预测、少样本学习和零样本跨域迁移等场景中均取得了最先进的性能。
现有对外生变量的利用的不足
外生变量是指系统中可观测但非预测目标的变量。如上图所示,网页浏览量(内生变量)的变化通常受交通流量、住院率、社会事件等外生变量影响。因此,纳入外生变量预测(FEV)变得愈发重要 。FEV 的核心是有效建模外生变量对内生变量的影响,现有研究通过注意力机制捕捉这种关联,但受限于两大挑战:
-
多粒度时间依赖:外生变量的影响具有多粒度特征(如周期性、趋势性),反映了人类行为和生活习惯的复杂性,仅用数值数据难以建模这种动态多样性 ,需深入学习多粒度时序特征。
-
虚假相关性:数据中的噪声和干预可能导致模型学习到有偏的外部影响(如交通流量与天气的正相关可能因管制措施失效),缺乏真实世界知识会导致预测不确定性。
本文模型
本文提出一种基于 LLM 的外生变量时间序列预测框架ExoLLM,利用语言知识捕捉外生变量的动态多样影响。如下图所示:
1 语言驱动的外生知识利用
通过元任务指令(MTI)引导 LLM 理解 FEV 任务的领域特征、变量定义及目标,激活跨任务知识迁移;设计多粒度提示(MGP)从自然属性、趋势、周期等维度提取外生变量的层次化知识;利用预训练 LLM 对文本指令和提示进行编码,通过特殊令牌<EOS>生成统一维度的文本嵌入,实现外生知识的结构化表示。
2 时序特征保留的 Tokenizer(TPT)
提出时序特征保留令牌化方法(TPT),将时间序列分割为非重叠片段,通过自注意力机制学习片段间的时序交互,选取最后一个片段作为令牌输出,以保留序列级时序信息和近期关键特征,解决传统线性嵌入忽略时序依赖的问题。
3 知识保留的 LLM 编码器
将文本嵌入(MTI、MGP)与时间序列token(外生 / 内生变量)按固定顺序拼接后输入冻结的 LLM 编码器,利用 LLM 的预训练知识增强内生变量表示,生成融合外生影响的编码结果,避免模型参数更新导致的知识遗忘。
4 双模态注意力对齐(DT²A)
设计双模态注意力机制(DT²A):通过交叉注意力将时间序列token映射到文本特征空间,利用多粒度提示实现模态对齐;文本 - 时序注意力(Text-TS Attention):将 LLM 输出的文本空间表示解码回时序空间,结合外生时序信息提升预测可行性。
5 轻量级预测头
采用线性层作为预测头,将 DT²A 解码后的内生变量token映射为未来时间序列,在保留 LLM 编码的外生知识和时序特征的同时,通过简单结构避免复杂计算导致的信息损耗,实现高效预测。
本文实验
在12个真实世界数据集上验证了ExoLLM的性能,涵盖长短期预测、少样本和零样本场景。结果表明,ExoLLM在长期预测中超越10个先进基线模型,56个设置中51个排名第一,平均MAE降低4.1%;在短期预测中较SOTA模型SCINet的MAE和MSE分别降低35.5%和46.1%;少样本和零样本场景下分别实现4.5%的误差降低和超5%的跨域迁移性能提升。消融实验验证了元任务指令、多粒度提示、双模态注意力等组件的必要性,外生变量规模分析表明更多提示和变量可提升模型对复杂环境的理解能力,案例研究通过注意力可视化展示了模型对关键变量的有效捕捉。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】