摘要
大型语言模型现在是人类决策过程中的关键助手。然而,一个常见的附言似乎总是出现:“大型语言模型可能会犯错。对重要信息要格外小心。”这指出了大型语言模型并非所有输出都可靠,用户必须手动评估它们。随着幻觉响应的出现,常常伴随着看似合理的解释,使得问题变得更加复杂,并在用户中引发信任问题。为了解决这一问题,本文提出了GE-Chat,一种知识图增强的检索增强生成框架,以提供基于证据的响应生成。具体来说,当用户上传一份材料文档时,会创建一个知识图谱,这有助于构建一个检索增强的代理,用超出其训练语料库之外的额外知识来增强代理的响应。然后我们利用思维链(CoT)逻辑生成、n跳子图搜索以及基于蕴含的句子生成来实现准确的证据检索。我们展示了我们的方法在识别自由形式上下文中的确切证据方面,改进了现有模型的性能,提供了一种可靠的方式来检查大型语言模型结论的资源,并帮助判断其可信度。数据集已发布于https://drive.google.com/drive/folders/1kNcsn1v0KH_srgL8w-NKvZM25o3onHBj?usp=sharing。
核心速览
研究背景
- 研究问题
:这篇文章要解决的问题是大型语言模型(LLMs)在生成回答时可能出现的误导性问题,即“幻觉”现象。LLMs虽然在多轮对话中表现出色,但它们可能会生成不准确或误导性的信息,用户需要手动评估这些信息的可靠性。
- 研究难点
:该问题的研究难点包括:如何在自由形式的上下文中准确识别证据,如何提供可靠的方式来检查LLMs结论的资源,以及如何帮助用户判断LLMs生成内容的可信度。
- 相关工作
:现有的解决方案主要分为两类:一类是通过微调LLMs来减少幻觉现象,但这需要大量资源且计算成本高;另一类是基于信息检索的方法,虽然可以进行多资源的事实性检查和验证,但依赖于外部信息源投票,查询次数多且复杂。此外,还有一些工作尝试通过匹配生成内容与原始文档中的证据来解决这一问题,但这些方法在处理冗余回答时效果不佳。
研究方法
这篇论文提出了GE-Chat框架,用于解决LLMs生成内容的可信度问题。具体来说,
-
Graph-RAG构建:首先,基于知识图谱的检索增强生成代理(Graph-RAG)被用来整合外部信息,支持基于图的查询和关系推理。用户上传文档后,元数据被切割成语料库块,然后通过提取实体和探测实体间的关系来构建知识图谱。LLMs用于生成知识图谱,并将图谱作为外部信息反馈给LLMs以生成响应。
-
CoT推理引导:其次,引入链式思维(Chain-of-Thought, CoT)推理诱导器,从LLMs生成的回答中逐步推导出推理过程。通过设计CoT模板,将每个回答与解释推理过程的CoT链关联起来。为了确保证据严格来源于提供的原始文档,引入了基于实体匹配的子图搜索步骤,将CoT推理锚定到知识图谱中的特定实体和关系上。
-
高效子图搜索:此外,基于派生的知识图谱(KG)和CoT进行子图搜索。对于每个CoT结果,匹配最相关的图实体,并通过源块检索获取多个块,将这些块与文档的原始内容连接起来。
-
证据内容优化。
实验设计
- 数据集构建
:为了解决现有研究中证据来源稀缺的问题,创建了一个包含1000个案例的数据集,涵盖10个类别:生物学、商业、化学、计算机科学、历史、管理、数学、物理、半导体和故事。数据集按PDF长度(短于10页、10-100页、长于100页)、问题类型(综合、结构、术语解释)以及人类注释的答案和相应证据句子进行结构化。
- 评估指标
:使用余弦相似度评估生成文本与正确文本的相关性,并使用简洁性分数量化LLMs找到相应证据的精确性。综合这两个方面,定义了证据得分
结果与分析
-
直接证据检索能力:实验结果表明,GPT4o的直接证据检索能力最好,其他模型表现较差,尤其是生成过多词语导致证据不简洁。
-
GE-Chat框架的应用:将GE-Chat框架应用于现有模型(除GPT4o外),结果显示,应用GE-Chat框架后,每个模型的基于证据的响应性能一致提高。
总体结论
本文提出了GE-Chat框架,通过严格的证据检索和验证方法,显著提高了LLMs生成内容的可靠性。通过对十个不同领域的LLMs进行评估,证明了其鲁棒性、多样性和广泛适用性。GE-Chat提供了一种透明且用户友好的方法,有助于使AI系统更加可靠和可信,为关键决策过程中的负责任部署铺平了道路。
论文评价
优点与创新
- 提出GE-Chat框架
:论文提出了GE-Chat,一种基于知识图谱增强的检索增强生成框架,用于提供基于证据的响应生成。
- 细粒度的证据标识
:该方法不仅对派生的源进行约束,还提供了句子级别的细粒度标识,以准确标记支持LLMs结论的证据。
- 多跳子图搜索
:利用Chain-of-Thought (CoT) 逻辑生成、n跳子图搜索和基于蕴含的句子生成,实现了准确的证据检索。
- 提高模型性能
:实验表明,该方法在识别自由形式上下文中的确切证据方面提高了现有模型的性能,并提供了一种可靠的方式来检查LLMs结论的资源,帮助判断其可信度。
- 适用性广泛
:该框架可以应用于任何具有出色证据检索能力的LLM(即使是在指令跟随能力有限的小型模型上,该框架仍然有助于突出结论的证据)。
- 透明且用户友好
:通过提供透明的证据检索和验证方法,GE-Chat有助于使AI系统更加可靠和可信,为关键决策过程中的负责任部署铺平了道路。
不足与反思
- 计算复杂性
:GE-Chat的计算复杂性涉及实体提取、关系探测和子图搜索
- 数据集稀缺
:为了解决先前研究中证据来源稀缺的问题,论文创建了一个包含1000个案例的数据集,但数据集的规模和多样性仍有待进一步扩展。
- 下一步工作
:尽管GE-Chat在多个LLMs上表现出色,但论文提到需要进一步研究和优化,以提高其在不同领域和任务中的鲁棒性和适用性。
关键问题及回答
问题1:GE-Chat框架是如何利用知识图谱来增强LLMs的回答的?
GE-Chat框架通过构建一个知识图谱来增强LLMs的回答。具体步骤如下:
- 知识图谱构建
:用户上传文档后,元数据被切割成语料库块,然后通过提取实体和探测实体间的关系来构建知识图谱。LLMs用于生成知识图谱,并将图谱作为外部信息反馈给LLMs以生成响应。
- 基于图的查询和推理
:知识图谱支持基于图的查询和关系推理,帮助LLMs在生成回答时考虑更多的上下文信息和关系。
- 多跳推理
:GE-Chat框架利用知识图谱的多跳推理能力,捕捉知识库中与回答相关的多个实体和关系,从而生成更准确和有洞察力的回答。
问题2:Chain-of-Thought (CoT) 推理诱导器在GE-Chat框架中的作用是什么?
- 逐步推理过程
:CoT推理诱导器通过设计CoT模板,从LLMs生成的回答中逐步推导出推理过程,解释LLMs是如何得出结论的。
- 逻辑结构
:每个回答都与一个解释推理过程的CoT链关联起来,提供了一种逻辑结构来理解回答的生成过程。
- 证据锚定
:为了确保证据严格来源于提供的原始文档,CoT推理诱导器引入了基于实体匹配的子图搜索步骤,将CoT推理锚定到知识图谱中的特定实体和关系上,从而增强回答的可信度和准确性。
问题3:GE-Chat框架中的高效子图搜索是如何实现的?
- 基于CoT和知识图谱的搜索
:对于每个CoT结果,GE-Chat框架匹配最相关的图实体,并通过源块检索获取多个块,将这些块与文档的原始内容连接起来。
- 多跳关系探测
:框架通过预计算的n跳关系图进行搜索,而不是全局搜索整个文档,从而提高了搜索效率。
- 锚定实体
:找到的实体子图作为锚点,引导回到原始文档的相应块,确保生成的内容与其原始内容对齐,增强了回答的可追溯性和可信度。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】