资料目录及介绍:
GraphGPT: 大语言模型的图结构指令微调
GraphGPT旨在使大语言模型理解图结构数据,执行图相关任务如节点分类和链接预测。面对图数据多样性和大模型能力迁移的挑战,GraphGPT探讨了图输入方法、模型对齐及推理能力增强等解决方案,目标实现大模型作为零样本图学习者的潜力。
复杂图上的知识迁移学习
本文介绍了复杂图上的知识迁移学习,探讨Data Hungry问题及解决方案,提出利用Open Domain数据补全特定领域知识的方法,并讨论了图数据分布偏移的挑战。分享了在普适场景下的图知识迁移方法KBL,以及知识迁移在图数据中的实践应用。
图技术在金融反欺诈中的应用
图技术在金融反欺诈中日益关键,通过构建复杂关系网络,提升识别黑产欺诈的精准度与效率。应对黑产欺诈手段升级,图算法助力发现聚集性风险与隐藏模式,保障金融安全与用户体验。
电信网络中的图学习性能优化
本文介绍了图技术在电信网络中的应用与发展,探讨图学习在金融风控、商业推荐等领域的优势与挑战,重点分析了图学习在性能优化方面的策略,并展望了未来发展趋势。
LLM 快速发展时代下图基础模型初探
探讨了大语言模型(LLM)背景下图基础模型(GFM)的概念、特点、发展及团队工作。LLM与图模型结合前景广阔,GFM作为新兴力量,展现了跨领域应用的潜力和优势,引领AI发展新方向。
多域图大模型在百度推荐系统的实践与思考
多域图大模型在百度推荐系统中被深入实践,通过图嵌入与图神经网络算法优化节点分类与边预测任务,提升推荐精准度。本文分享了图模型背景、常用算法及在百度Feed图模型中的演进历史,展现了多域图大模型在复杂推荐场景中的实际应用与成效。
蚂蚁关于TuGraph-DB 图数据库高可用架构介绍
介绍了TuGraph-DB图数据库高可用架构,涵盖高可用定义、架构模式、主备复制等,确保系统高可用,案例达5个9级别,保障业务连续性和数据安全。
深入浅出快手图数据库:看架构如何让推荐召回更高效
本文深入探讨了快手图数据库的存算分离架构,重点分析其在实时推荐召回中的应用。通过图扩散和共同关注等场景,展示了架构如何高效处理大规模数据,优化推荐效果。案例详实,技术细节丰富,为提升推荐系统性能提供了宝贵经验。
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型实际应用案例分享
①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~