前言
FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力,它背后依赖OneApi开源项目来访问各种大语言模型提供的能力。各大语言模型提供的访问接口规范不尽相同,为此OneApi项目提供了统一的API接口去对接各种大语言模型。FastGPT的部署架构如图所示:
本文章将介绍如何部署OneApi和FastGPT,以及两种在线大语言模型(AzureOpenAI和讯飞星火3.5)的配置方法。
我将在Windows系统的WSL子系统上进行部署,WSL子系统安装的是Ubuntu22 Linux系统,WSL的部署方式完全适用于真实的Linux系统。
一、部署OneApi
OneApi项目开源地址:https://github.com/songquanpeng/one-api
1.在/opt目录下创建oneapi目录
cd opt
mkdir oneapi
cd oneapi
2.编辑docker-compose.yml文件
在/opt/oneapi目录下创建docker-compose.yml文件,将下面的内容复制进去并保存
version: '3.8'
services:
oneapi:
container_name: oneapi
image: justsong/one-api:latest
restart: unless-stopped
ports:
- 3001:3000
networks:
- llm_net
volumes:
- ./data:/data
environment:
- TZ=Asia/Shanghai
networks:
llm_net:
name: llm_net
external: true
3.创建llm_net docker网络
docker network create llm_net
4.运行oneapi
docker compose up -d
5.配置AzureOpenAI渠道
登录http://localhost:3001,用户名:root,密码:123456。
如果你没有申请AzureOpenAI,可以直接查看讯飞星火的配置方式。其实申请AzureOpenAI并不难,网上教程很多,只要真实填写相关信息,一般24小时内就可以通过。
接下来我们添加AzureOpenAI渠道,按照图中的方式填写就好了。这里有一个需要注意的地方就是名称那一项填的是Azure上面的部署名称,而这个部署名称必须要和模型名称一致(很奇怪的做法,GitHub上已经有人提了issue,正在解决)
6.测试
渠道添加成功后,可以在渠道列表页面点击“测试”按钮,如果没有问题,会返回测试成功。
7.创建令牌
令牌的名称随便填,由于是测试,可以把额度设置为无限额度。
提交后,可以在令牌列表页面复制刚刚创建的令牌,这个令牌将在部署FastGPT时用到。
二、部署fastgpt
1.在/opt目录下创建fastgpt目录
cd opt
mkdir fastgpt
cd fastgpt
2.编辑docker-compose.yml文件
请先阅读FastGPT官方部署文档:https://doc.fastgpt.in/docs/development/docker/
下载docker-compose.yml文件和config.json文件
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/files/deploy/fastgpt/docker-compose.yml
curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json
编辑docker-compose.yml文件,主要是更改了容器网络,数据库用户名密码之类的
version: '3.8'
services:
pg:
image: ankane/pgvector:v0.5.0 # git
# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.5.0 # 阿里云
container_name: pg
restart: always
ports:
- 5432:5432
networks:
- llm_net
environment:
- POSTGRES_USER=fastgpt
- POSTGRES_PASSWORD=123456
- POSTGRES_DB=fastgpt
volumes:
- ./pg/data:/var/lib/postgresql/data
mongo:
image: mongo:5.0.18
# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云
container_name: mongo
ports:
- 27017:27017
networks:
- llm_net
command: mongod --keyFile /data/mongodb.key --replSet rs0
environment:
- MONGO_INITDB_ROOT_USERNAME=fastgpt
- MONGO_INITDB_ROOT_PASSWORD=123456
volumes:
- ./mongo/data:/data/db
- ./mongodb.key:/data/mongodb.key
fastgpt:
container_name: fastgpt
image: ghcr.io/labring/fastgpt:latest # git
# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:latest # 阿里云
ports:
- 3002:3000
networks:
- llm_net
depends_on:
- mongo
- pg
restart: always
environment:
- DEFAULT_ROOT_PSW=123456
- OPENAI_BASE_URL=http://192.168.2.117:3001/v1
- CHAT_API_KEY=sk-XXXXX # 在OneApi中创建的令牌
- DB_MAX_LINK=5 # database max link
- TOKEN_KEY=any
- ROOT_KEY=root_key
- FILE_TOKEN_KEY=filetoken
# mongo 配置,不需要改. 用户名myname,密码mypassword。
- MONGODB_URI=mongodb://fastgpt:123456@mongo:27017/fastgpt?authSource=admin
# pg配置. 不需要改
- PG_URL=postgresql://fastgpt:123456@pg:5432/fastgpt
volumes:
- ./config.json:/app/data/config.json
networks:
llm_net:
name: llm_net
external: true
这里要注意的 OPENAI_BASE_URL=http://192.168.2.117:3001/v1,我本来想设置成http://oneapi:3000/v1,因为fastgpt与oneapi在同一个docker网络,但fastgpt访问不了这个地址,可能是哪里没有设置对,只好先用本机ip来访问。
3.编辑config.json文件
改动如下,name改成在oneapi配置中的一样
4.运行fastgpt
docker compose up -d
运行成功之后,不要忘了对MongoDb进行配置,直接按官网的步骤进行操作:
# 查看 mongo 容器是否正常运行
docker ps
# 进入容器
docker exec -it mongo bash
# 连接数据库
mongo -u myname -p mypassword --authenticationDatabase admin
# 初始化副本集。如果需要外网访问,mongo:27017 可以改成 ip:27017。但是需要同时修改 FastGPT 连接的参数(MONGODB_URI=mongodb://myname:mypassword@mongo:27017/fastgpt?authSource=admin => MONGODB_URI=mongodb://myname:mypassword@ip:27017/fastgpt?authSource=admin)
rs.initiate({
_id: "rs0",
members: [
{ _id: 0, host: "mongo:27017" }
]
})
# 检查状态。如果提示 rs0 状态,则代表运行成功
rs.status()
5.测试
官网说OPENAI_BASE_URL地址后面要加v1,当我加了的时候,测试结果如下,报404:
于是去oneapi容器查看日志,可以看到fastgpt请求已经转到了oneapi,oneapi又去请求AzureOpenAI, AzureOpenAI返回404。于是去Azure上测试部署后的聊天功能,按F12查看网络请求,发现路由里面没有v1
于是更改docker-compose.yml文件,把OPENAI_BASE_URL值中的v1去掉了,重新执行docker-compose up -d ,重启之后继续测试,这次的报错就不一样了,如下图所示:
查看oneapi日志,请求结果是200,但没有响应内容,找了很久的原因,无法得知是OneApi还是Azure OpenAI的问题,于是转而去测试讯飞星火大模型。
三、配置讯飞星火认知大模型
1.创建讯飞模型应用
先去官方领取讯飞星火认知大模型的个人免费试用套餐(我选的是V3.5版本):https://xinghuo.xfyun.cn/sparkapi?scr=price
然后去到讯飞开放平台去创建基于v3.5版本的应用,得到APPID、APISecret、APIKey三个值(在OneApi中需要用到)
2.在oneapi页面添加星火模型渠道
3.编辑fastgpt的config.json文件
增加星火模型的配置
4.重启fastgpt容器
注意:如果你之前的操作把OPENAI_BASE_URL的v1去掉了,请把它补上,然后执行命令:docker-compose up -d
5.测试
AI模型选择上面配置的spark3.5,测试成功
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型实际应用案例分享
①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~