大模型工程师百宝箱:14个类别、120+大模型库,带你成为大模型开发大师!

为大语言模型(LLM)开发者整理了超过120个相关库,并按训练、推理、应用开发等14个类别进行分类,涵盖从数据提取到安全评估的全方位工具,助力开发者高效筛选和利用资源。

在大语言模型(LLM)迅速发展的今天,开发者们面临着海量的资源和工具选择。如何高效地筛选和利用这些资源,成为了每一个 LLM 开发者的关键任务。 今天,我们要介绍的 GitHub 仓库——LLM Engineer Toolkit,或许能成为你的得力助手!

https://github.com/KalyanKS-NLP/llm-engineer-toolkit

这个由 KalyanKS-NLP 创建的仓库,精心整理了超过 120 个 LLM 相关的库,并按照类别进行了分类。无论是训练、推理、应用开发,还是数据提取、安全评估,你都能在这里找到对应的工具。

图片

大模型工具划分

  • 🚀 LLM Training:专注于 LLM 训练和微调的工具,帮助你更快、更高效地优化模型。
  • 🧱 LLM Application Development:从框架到多 API 接入,再到缓存和低代码开发,为应用开发提供全方位支持。
  • 🩸 LLM RAG:Retrieval-Augmented Generation(检索增强生成)相关的库,提升模型的知识检索能力。
  • 🟩 LLM Inference:推理加速和优化工具,让模型运行更流畅。
  • 🚧 LLM Serving:模型部署和推理服务的解决方案。
  • 📤 LLM Data Extraction:数据提取工具,帮助你从各种来源获取高质量数据。
  • 🌠 LLM Data Generation:生成合成数据,丰富你的训练集。
  • 💎 LLM Agents:构建智能代理,实现自动化任务和多代理协作。
  • ⚖️ LLM Evaluation:评估工具,确保模型性能达到预期。
  • 🔍 LLM Monitoring:监控模型运行状态,及时发现并解决问题。
  • 📅 LLM Prompts:优化和管理提示词,提升模型输出质量。
  • 📝 LLM Structured Outputs:生成结构化输出,让模型结果更易用。
  • 🛑 LLM Safety and Security:保障模型的安全性和可靠性。
  • 💠 LLM Embedding Models:提供先进的文本嵌入模型。
  • ❇️ Others:其他实用工具,涵盖更多开发场景。

LLM Training and Fine-Tuning

LibraryDescription
unslothFine-tune LLMs faster with less memory.
PEFTState-of-the-art Parameter-Efficient Fine-Tuning library.
TRLTrain transformer language models with reinforcement learning.
TransformersTransformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
AxolotlTool designed to streamline post-training for various AI models.
LLMBoxA comprehensive library for implementing LLMs, including a unified training pipeline and comprehensive model evaluation.
LitGPTTrain and fine-tune LLM lightning fast.
MergooA library for easily merging multiple LLM experts, and efficiently train the merged LLM.
Llama-FactoryEasy and efficient LLM fine-tuning.
LudwigLow-code framework for building custom LLMs, neural networks, and other AI models.
TxtinstructA framework for training instruction-tuned models.
LaminiAn integrated LLM inference and tuning platform.
XTuringxTuring provides fast, efficient and simple fine-tuning of open-source LLMs, such as Mistral, LLaMA, GPT-J, and more.
RL4LMsA modular RL library to fine-tune language models to human preferences.
DeepSpeedDeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
torchtuneA PyTorch-native library specifically designed for fine-tuning LLMs.
PyTorch LightningA library that offers a high-level interface for pretraining and fine-tuning LLMs.

LLM Application Development

Frameworks

LibraryDescription
LangChainLangChain is a framework for developing applications powered by large language models (LLMs).
Llama IndexLlamaIndex is a data framework for your LLM applications.
HayStackHaystack is an end-to-end LLM framework that allows you to build applications powered by LLMs, Transformer models, vector search and more.
Prompt flowA suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications.
GriptapeA modular Python framework for building AI-powered applications.
WeaveWeave is a toolkit for developing Generative AI applications.
Llama StackBuild Llama Apps.

*Data Preparation*

LibraryDescription
Data Prep KitData Prep Kit accelerates unstructured data preparation for LLM app developers. Developers can use Data Prep Kit to cleanse, transform, and enrich use case-specific unstructured data to pre-train LLMs, fine-tune LLMs, instruct-tune LLMs, or build RAG applications.

*Multi API Access*

LibraryDescription
LiteLLMLibrary to call 100+ LLM APIs in OpenAI format.
AI GatewayA Blazing Fast AI Gateway with integrated Guardrails. Route to 200+ LLMs, 50+ AI Guardrails with 1 fast & friendly API.

*Routers*

LibraryDescription
RouteLLMFramework for serving and evaluating LLM routers - save LLM costs without compromising quality. Drop-in replacement for OpenAI’s client to route simpler queries to cheaper models.

*Memory*

LibraryDescription
mem0The Memory layer for your AI apps.
MemoripyAn AI memory layer with short- and long-term storage, semantic clustering, and optional memory decay for context-aware applications.
Letta (MemGPT)An open-source framework for building stateful LLM applications with advanced reasoning capabilities and transparent long-term memory
MemobaseA user profile-based memory system designed to bring long-term user memory to your Generative AI applications.

*Interface*

LibraryDescription
StreamlitA faster way to build and share data apps. Streamlit lets you transform Python scripts into interactive web apps in minutes
GradioBuild and share delightful machine learning apps, all in Python.
AI SDK UIBuild chat and generative user interfaces.
AI-GradioCreate AI apps powered by various AI providers.
SimpleaichatPython package for easily interfacing with chat apps, with robust features and minimal code complexity.
ChainlitBuild production-ready Conversational AI applications in minutes.

*Low Code*

LibraryDescription
LangFlowLangFlow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.

*Cache*

LibraryDescription
GPTCacheA Library for Creating Semantic Cache for LLM Queries. Slash Your LLM API Costs by 10x 💰, Boost Speed by 100x. Fully integrated with LangChain and LlamaIndex.

LLM RAG

LibraryDescription
FastGraph RAGStreamlined and promptable Fast GraphRAG framework designed for interpretable, high-precision, agent-driven retrieval workflows.
ChonkieRAG chunking library that is lightweight, lightning-fast, and easy to use.
RAGCheckerA Fine-grained Framework For Diagnosing RAG.
RAG to RichesBuild, scale, and deploy state-of-the-art Retrieval-Augmented Generation applications.
BeyondLLMBeyond LLM offers an all-in-one toolkit for experimentation, evaluation, and deployment of Retrieval-Augmented Generation (RAG) systems.
SQLite-VecA vector search SQLite extension that runs anywhere!
fastRAGfastRAG is a research framework for efficient and optimized retrieval-augmented generative pipelines, incorporating state-of-the-art LLMs and Information Retrieval.
FlashRAGA Python Toolkit for Efficient RAG Research.
LlmwareUnified framework for building enterprise RAG pipelines with small, specialized models.
RerankersA lightweight unified API for various reranking models.
VectaraBuild Agentic RAG applications.

LLM Inference

LibraryDescription
LLM CompressorTransformers-compatible library for applying various compression algorithms to LLMs for optimized deployment.
LightLLMPython-based LLM inference and serving framework, notable for its lightweight design, easy scalability, and high-speed performance.
vLLMHigh-throughput and memory-efficient inference and serving engine for LLMs.
torchchatRun PyTorch LLMs locally on servers, desktop, and mobile.
TensorRT-LLMTensorRT-LLM is a library for optimizing Large Language Model (LLM) inference.
WebLLMHigh-performance In-browser LLM Inference Engine.

LLM Serving

LibraryDescription
LangcornServing LangChain LLM apps and agents automagically with FastAPI.
LitServeLightning-fast serving engine for any AI model of any size. It augments FastAPI with features like batching, streaming, and GPU autoscaling.

LLM Data Extraction

LibraryDescription
Crawl4AIOpen-source LLM Friendly Web Crawler & Scraper.
ScrapeGraphAIA web scraping Python library that uses LLM and direct graph logic to create scraping pipelines for websites and local documents (XML, HTML, JSON, Markdown, etc.).
DoclingDocling parses documents and exports them to the desired format with ease and speed.
Llama ParseGenAI-native document parser that can parse complex document data for any downstream LLM use case (RAG, agents).
PyMuPDF4LLMPyMuPDF4LLM library makes it easier to extract PDF content in the format you need for LLM & RAG environments.
CrawleeA web scraping and browser automation library.
MegaParseParser for every type of document.
ExtractThinkerDocument Intelligence library for LLMs.

LLM Data Generation

LibraryDescription
DataDreamerDataDreamer is a powerful open-source Python library for prompting, synthetic data generation, and training workflows.
fabricatorA flexible open-source framework to generate datasets with large language models.
PromptwrightSynthetic Dataset Generation Library.
EasyInstructAn Easy-to-use Instruction Processing Framework for Large Language Models.

LLM Agents

LibraryDescription
CrewAIFramework for orchestrating role-playing, autonomous AI agents.
LangGraphBuild resilient language agents as graphs.
AgnoBuild AI Agents with memory, knowledge, tools, and reasoning. Chat with them using a beautiful Agent UI.
Agents SDKBuild agentic apps using LLMs with context, tools, hand off to other specialized agents.
AutoGenAn open-source framework for building AI agent systems.
SmolagentsLibrary to build powerful agents in a few lines of code.
Pydantic AIPython agent framework to build production grade applications with Generative AI.
BeeAIBuild production-ready multi-agent systems in Python.
gradio-toolsA Python library for converting Gradio apps into tools that can be leveraged by an LLM-based agent to complete its task.
ComposioProduction Ready Toolset for AI Agents.
Atomic AgentsBuilding AI agents, atomically.
MemaryOpen Source Memory Layer For Autonomous Agents.
Browser UseMake websites accessible for AI agents.
OpenWebAgentAn Open Toolkit to Enable Web Agents on Large Language Models.
LagentA lightweight framework for building LLM-based agents.
LazyLLMA Low-code Development Tool For Building Multi-agent LLMs Applications.
SwarmsThe Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework.
ChatArenaChatArena is a library that provides multi-agent language game environments and facilitates research about autonomous LLM agents and their social interactions.
SwarmEducational framework exploring ergonomic, lightweight multi-agent orchestration.
AgentStackThe fastest way to build robust AI agents.
ArchgwIntelligent gateway for Agents.
FlowA lightweight task engine for building AI agents.
AgentOpsPython SDK for AI agent monitoring.
LangroidMulti-Agent framework.
AgentariumFramework for creating and managing simulations populated with AI-powered agents.
UpsonicReliable AI agent framework that supports MCP.

LLM Evaluation

LibraryDescription
RagasRagas is your ultimate toolkit for evaluating and optimizing Large Language Model (LLM) applications.
GiskardOpen-Source Evaluation & Testing for ML & LLM systems.
DeepEvalLLM Evaluation Framework
LightevalAll-in-one toolkit for evaluating LLMs.
TrulensEvaluation and Tracking for LLM Experiments
PromptBenchA unified evaluation framework for large language models.
LangTestDeliver Safe & Effective Language Models. 60+ Test Types for Comparing LLM & NLP Models on Accuracy, Bias, Fairness, Robustness & More.
EvalPlusA rigorous evaluation framework for LLM4Code.
FastChatAn open platform for training, serving, and evaluating large language model-based chatbots.
judgesA small library of LLM judges.
EvalsEvals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.
AgentEvalsEvaluators and utilities for evaluating the performance of your agents.
LLMBoxA comprehensive library for implementing LLMs, including a unified training pipeline and comprehensive model evaluation.
OpikAn open-source end-to-end LLM Development Platform which also includes LLM evaluation.

LLM Monitoring

LibraryDescription
MLflowAn open-source end-to-end MLOps/LLMOps Platform for tracking, evaluating, and monitoring LLM applications.
OpikAn open-source end-to-end LLM Development Platform which also includes LLM monitoring.
LangSmithProvides tools for logging, monitoring, and improving your LLM applications.
Weights & Biases (W&B)W&B provides features for tracking LLM performance.
HeliconeOpen source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc.
EvidentlyAn open-source ML and LLM observability framework.
PhoenixAn open-source AI observability platform designed for experimentation, evaluation, and troubleshooting.
ObserversA Lightweight Library for AI Observability.

LLM Prompts

LibraryDescription
PCToolkitA Unified Plug-and-Play Prompt Compression Toolkit of Large Language Models.
Selective ContextSelective Context compresses your prompt and context to allow LLMs (such as ChatGPT) to process 2x more content.
LLMLinguaLibrary for compressing prompts to accelerate LLM inference.
betterpromptTest suite for LLM prompts before pushing them to production.
PromptifySolve NLP Problems with LLMs & easily generate different NLP Task prompts for popular generative models like GPT, PaLM, and more with Promptify.
PromptSourcePromptSource is a toolkit for creating, sharing, and using natural language prompts.
DSPyDSPy is the open-source framework for programming—rather than prompting—language models.
Py-priomptPrompt design library.
PromptimizerPrompt optimization library.

LLM Structured Outputs

LibraryDescription
InstructorPython library for working with structured outputs from large language models (LLMs). Built on top of Pydantic, it provides a simple, transparent, and user-friendly API.
XGrammarAn open-source library for efficient, flexible, and portable structured generation.
OutlinesRobust (structured) text generation
GuidanceGuidance is an efficient programming paradigm for steering language models.
LMQLA language for constraint-guided and efficient LLM programming.
JsonformerA Bulletproof Way to Generate Structured JSON from Language Models.

LLM Safety and Security

LibraryDescription
JailbreakEvalA collection of automated evaluators for assessing jailbreak attempts.
EasyJailbreakAn easy-to-use Python framework to generate adversarial jailbreak prompts.
GuardrailsAdding guardrails to large language models.
LLM GuardThe Security Toolkit for LLM Interactions.
AuditNLGAuditNLG is an open-source library that can help reduce the risks associated with using generative AI systems for language.
NeMo GuardrailsNeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.
GarakLLM vulnerability scanner
DeepTeamThe LLM Red Teaming Framework

LLM Embedding Models

LibraryDescription
Sentence-TransformersState-of-the-Art Text Embeddings
Model2VecFast State-of-the-Art Static Embeddings
Text Embedding InferenceA blazing fast inference solution for text embeddings models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.

Others

LibraryDescription
Text MachinaA modular and extensible Python framework, designed to aid in the creation of high-quality, unbiased datasets to build robust models for MGT-related tasks such as detection, attribution, and boundary detection.
LLM ReasonersA library for advanced large language model reasoning.
EasyEditAn Easy-to-use Knowledge Editing Framework for Large Language Models.
CodeTFCodeTF: One-stop Transformer Library for State-of-the-art Code LLM.
spacy-llmThis package integrates Large Language Models (LLMs) into spaCy, featuring a modular system for fast prototyping and prompting, and turning unstructured responses into robust outputs for various NLP tasks.
pandas-aiChat with your database (SQL, CSV, pandas, polars, MongoDB, NoSQL, etc.).
LLM Transparency ToolAn open-source interactive toolkit for analyzing internal workings of Transformer-based language models.
VannaChat with your SQL database. Accurate Text-to-SQL Generation via LLMs using RAG.
mergekitTools for merging pretrained large language models.
MarkLLMAn Open-Source Toolkit for LLM Watermarking.
LLMSanitizeAn open-source library for contamination detection in NLP datasets and Large Language Models (LLMs).
AnnotateaiAutomatically annotate papers using LLMs.
LLM ReasonerMake any LLM think like OpenAI o1 and DeepSeek R1.

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值