这个春节AI圈可以说是热闹非凡。deepseek连放"卫星",先是R1震惊四座,现在又整了个能跟DALL-E 3叫板的Janus-Pro。
与此同时,有个叫dify的开源平台默默破了6万star,成了开源开发圈的新宠。今天,我要跟大家分享如何搭建这对黄金搭档,以及我简单的使用心得。
Dify是何方神圣?
Dify是一个开源的LLM应用开发平台,它通过直观的可视化界面,帮助开发者快速构建和部署AI应用,支持包括模型管理、知识库、工作流编排等全方位功能,你可以把它理解为一个类似于扣子的"AI应用的乐高积木系统"。
#来!安装试试看
在开始安装之前,我们需要确保系统满足以下基本要求:
- CPU至少2核心
- 内存至少4GB(建议8GB以上)
- 硬盘空间至少20GB(为了后续扩展)
- 操作系统支持:Windows、macOS或Linux
- Docker环境(Windows用户建议开启WSL2)如果你对 docker 不熟 建议看看这个文章[Docker 和 Docker Compose 命令行工具整理]
1. dify的安装步骤
首先,让我们来安装dify。虽然有多种部署方式,但我建议使用Docker方式部署,这样最简单稳妥也最不容易出错:
- 下载代码:
git clone https://github.com/langgenius/dify.git
cd dify/docker
- 配置环境:
cp .env.example .env
- 启动服务:
如果你使用的是Docker Compose V2:
docker compose up -d
如果是V1版本:
docker-compose up -d
安装完成后,通过以下命令检查服务状态:
docker compose ps
检查要特别关注以下几个关键容器的状态:
- docker-api-1:API服务
- docker-web-1:Web界面
- docker-worker-1:后台任务处理
- docker-db-1:数据库
- docker-redis-1:缓存服务
- docker-nginx-1:反向代理
所有容器都应该显示"Up"状态。然后我们可以通过浏览器访问:
http://localhost/install
2. deepseek-r1的部署
接下来是安装deepseek-r1。这个过程相对简单,但需要注意一些细节:
- 安装Ollama:Windows用户:从官网下载安装包.Linux用户:使用curl安装
curl -fsSL https://ollama.ai/install.sh | bash
- macOS用户:使用Homebrew安装
brew install ollama
安装完成后,打开终端验证:
ollama -v
- 下载deepseek-r1模型:基础版本(推荐新手使用):
ollama run deepseek-r1:7b
高性能版本(需要较好的硬件配置):
ollama run deepseek-r1:14b
下载过程可能需要一段时间,取决于你的网络速度。7b版本大约需要4.7GB空间,14b版本需要约9GB空间。
3. 系统联调与配置
现在两个系统都装好了,需要进行整合配置:
dify基础配置:打开.env文件,配置以下关键参数:
`CONSOLE_URL=http://localhost SERVICE_API_URL=http://localhost UPLOAD_FILE_SIZE_LIMIT=50 # 文件上传限制,单位MB UPLOAD_FILE_MIME_TYPES=.pdf,.doc,.docx,.txt # 允许上传的文件类型`在dify控制台中添加模型配置:访问http://localhost,完成注册,登录后进入Settings → Model Provider添加Local Model配置,这里选择ollama就可以了
选择API格式为Ollama,相关的配置如下,因为我是使用的docker来进行部署的,访问部宿主机的地址记得使用host.docker.internal这个地址,你也可以使用你局域网电脑中的网址!
测试整合,来创建一个简单的聊天会话应用创建一个新的应用
选择刚配置的deepseek-r1模型,我发送测试消息发送测试消息验证响应
实战应用案例
现在来分享一些实际应用场景和具体的操作步骤。
智能文档案例
什么是知识库?知识库就像是一个智能的企业大脑,你可以往里面放入公司的各种资料,比如产品手册、培训文档、客户案例等。当有人需要找什么信息时,不用再到处问同事或者翻文件夹,直接在知识库里搜索就能快速找到答案。它最大的特点是可以帮你管理和查找各种资料,让公司的知识经验能够保存下来,新员工也能更快上手工作。
创建知识库:进入dify控制台,选择"Dataset"→"Create New",上传文档文件,这里的文档支持多种格式,也支持从notion当中导入,还可以同步外部的站点
设置索引参数和检索规则,这里我推荐使用 nomic-embed-text:latest作为你的文件嵌入模型,也是使用 ollama来拉取和运行,pull一下就可以了,完全不用操心其他的操作!
ollama pull nomic-embed-text
完成上面的步骤之后,我们就可以导入自己需要检索的文档。在后面的对话或者工作流中直接引用
工作流案例
配置工作流:创建新的Workflow,我这里直接选择一个已有的工作流: 文档总结工作流
然后添加文档处理节点,这里只需把之前的GPT3.5换成DeepSeek-R1就可以了
操作步骤如下:
当然你也可以自定义设置提示词模板:
`任务:分析以下文档并提取关键信息 文档内容:{{context}} 要求: 1. 提取主要观点 2. 总结关键数据 3. 生成行动建议之之后`击运行输入要总结的内容
最后的运行结果是:
最后
上面演示的只是Dify最简单的聊天应用知识库和工作流的使用,还有更多的功能和工作流值得您挖掘,更多高级的用法
玩Dify的工作流本身就像搭积木一样,用它来搭建各种有趣的 AI 应用。比如做一个智能客服,帮你自动回答客户的问题;或者做个私人助理,帮你整理文档、写邮件、做会议记录;甚至可以做个创意助手,帮你写文案、做营销策划、设计广告语。
你不需要写复杂的代码,只要像拖拽积木一样,把不同的功能模块组合在一起,就能做出你想要的应用。它就像是给你一套 AI 魔法工具,让你能轻松地把脑子里的想法变成现实。
而且扣子能做的,它统统都能做!
因为deepseek已经把开源的威力充分的展示给大家看了!相信随着AI技术的快速发展,dify和deepseek-r1的结合使用将会迎来更多可能性!
结语
通过本文的详细指南,相信大家已经对如何部署和使用这对搭档有了深入的了解。记住,工具的价值在于使用,建议大家在实践中不断探索和优化,找到最适合自己需求的使用方式。
如果你在使用过程中遇到任何问题,欢迎在评论区讨论。让我们一起在AI技术的浪潮中不断学习和进步!
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈