CNN Model Architecture
CNN(卷积神经网络)的模型架构由输入层、卷积层、池化层以及全连接层组成,通过卷积操作提取图像特征,并通过池化减少参数数量,最终通过全连接层进行分类或回归。
-
输入层:接收原始图像数据,可能需要进行预处理,如归一化、尺寸调整等。
-
卷积层:通过一系列可学习的卷积核(或称为滤波器)对输入图像进行卷积操作,以提取图像中的局部特征。每个卷积核都会生成一个特征图(feature map),这些特征图共同构成了卷积层的输出。
-
池化层:通常位于卷积层之后,用于对特征图进行下采样,以减少数据的空间维度和参数数量,同时保留重要特征。常见的池化操作包括最大池化和平均池化。
-
全连接层:将卷积层和池化层提取的特征进行全局整合,并映射到样本标记空间。全连接层的每个神经元都与前一层的所有神经元相连,起到分类器的作用。
CNN Model Architecture
输入层(Input):CNN(卷积神经网络)的输入层是原始图像数据进入网络的第一步,它负责将图像数据以适当的格式和状态传递给后续的卷积层、池化层等网络层。
输入层(input)
输入层直接接收来自外部的图像数据,这些数据可能是图像文件(如JPEG、PNG格式)中的像素值,或者是通过图像采集设备(如摄像头)实时捕获的数据。
输入层(input)
输入层数据预处理:将原始图像数据转换为适合网络学习的格式和范围的过程,包括尺寸调整、归一化、去均值等