最推荐的方式:啥都别管,直接上项目。
如果公司里没有好的项目,那就自己选择一个感兴趣的方向做一个自己感兴趣的项目。
一旦你开启了一个项目,这个项目就会推着你往前走。
不要想着有没有准备好,因为你永远不会准备好,一切准备都是在做项目的中途完成的。
不会python?不要紧,遇到问题现学。
不会python?不要紧,遇到问题现学。
如果你想要直接着手大模型,可以一边做项目,一边学习下面的这个开源书,看完这本书,你就算入门。
利用好已经成品的AI,帮助你进行学习。
成品AI的应用门槛是很低的,但是如果你能用的好,可以帮助你至少提升50%的学习效率。
比如说最开始你肯定会遇到python怎么装的问题。
比如说最开始你肯定会遇到python怎么装的问题。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学会使用github
Github是必然要学的,因为在github上你能够找到非常多的高质量的学习资料。
如果你实在找不到一个合适的项目,那么就直接在github上找已经成品的项目,并对它的代码进行拆解。
这种项目最好是所有代码都开源的项目,这样你就能从头开始学习一个大模型的构建,大模型的分词器的训练,微调,量化等等。
现在我就在学习一个开源的项目,直接看他的源码进行学习:
学习别人代码的细节
这里所谓的细节其实是指,你在别人的代码里面看到他使用了某个方法,比如说他在训练分词器的时 候使用了bpe,那么你不能单单的了解它是一种分词算法,而是要知道它的内在原理是什么,如果 能够通过自己码代码对其进行复现是最好的。
读论文
目前的大模型上面用了很多技巧和算法,实际上都有源头的论文,想要知道这些算法的细节,那么直 接去读他的论文是比较好的。
读论文的话也完全可以通过现有的AI产品辅助你进行阅读。
比如说最近大火的Kimi,可以直接将论文传上去,然后直接向kimi提问即可。

一、打牢理论基础
1、数学知识:深入学习线性代数、概率论与数理统计、微积分等,这些是理解机器学习算法的基础。可以通过以下方式学习:
-
在线课程:如Coursera、edX上的相关课程。
-
书籍:如《线性代数及其应用》、《概率论与数理统计》等。
2、编程技能:掌握Python等编程语言,并熟悉以下技能:
-
数据处理:熟悉Pandas、NumPy等库。
-
深度学习框架:熟练使用TensorFlow、PyTorch等。
3、机器学习原理:了解并掌握以下内容:
-
监督学习、非监督学习、强化学习的基本概念。
-
经典算法:如线性回归、决策树、神经网络等。
-
通过《机器学习》、《深度学习》等专业书籍深入学习。
二、专业技能提升
-
专业培训课程,选择以下类型的课程进行系统学习:
-
深度学习专项课程:如DeepLearning.AI的系列课程。
-
大模型专题课程:关注国内外知名大学和研究机构的相关课程。
-
学术论文:定期阅读以下论文,保持对研究前沿的了解:
-
顶级会议论文:如NeurIPS、ICML、AAAI等。
-
期刊论文:如JMLR、TPAMI等。
-
实战经验:
参与开源项目:如GitHub上的TensorFlow、PyTorch官方项目。
个人项目:复现经典模型,如BERT、GPT,或参与Kaggle竞赛。
三、建立行业联系
1、行业社群: 加入以下社群,与同行交流:
-
技术论坛:如CSDN、知乎上的AI板块。
-
专业微信群、QQ群:关注行业动态,交流学习经验。
2、行业活动:积极参与以下活动:
-
学术会议:如ACL、CVPR等。
-
技术沙龙:关注本地或线上举办的AI主题沙龙。
3、个人品牌:
-
技术博客:在博客平台分享学习心得和项目经验。
-
社交媒体:在LinkedIn、微博等分享专业内容,扩大影响力。
四、求职准备
1、简历制作:
-
突出项目经验:详细描述在大模型领域的项目经历。
-
展示研究成果:如有发表过的论文或专利,务必列出。
2、求职渠道:
-
招聘网站:如LinkedIn、智联招聘、BOSS直聘等。
-
企业官网:直接关注目标企业的招聘信息。
3、面试准备:
-
模型理解:准备解释大模型的工作原理和优势。
-
编程题:练习LeetCode、牛客网等平台上的算法题。
五、跨行业融合
1、结合专长: 思考如何将AI大模型技术应用于原有行业,如金融、医疗、教育等。
2、寻找合作伙伴:
-
与AI公司合作:参与跨行业项目,实现资源共享。
-
创业机会:探索AI大模型在特定行业的应用,寻找创业机会。
转行进入AI大模型领域是一个系统工程,需要扎实的理论基础、丰富的实践经验、广泛的行业联系和周密的求职策略。通过上述途径,你可以逐步建立起自己的竞争力,最终实现职业生涯的成功转型。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓