如何给AI大模型喂数据?

如果我想要大模型学习我的知识,怎么给他数据呢?

数据是大模型的食物,只有对了,模型才能更好地学习和成长。

这里介绍大模型优化的三种方式:长文本提示,RAG,微调。

长文本提示

比如我们上传一篇文章,发给大模型让他总结一下里面的内容,这个就是长文本提示。

我们上传的这篇文章,跟我们的提示词拼接后,会一起发给大模型。

这个长文本数据,它只能在你的这个对话窗口内有效,而且还不能超过它模型本身支持的上下文长度。

在问答系统、内容创作等任务中,提示词可以显著提升模型的表现。

RAG(检索增强生成)

RAG 就是我们经常听到的知识库。

这个知识库就好比我们写论文的时候,在图书馆里有一大堆书,当你开始写某个主题的时候。

  • 你才会根据你的需要去把那些相关的书籍段落都找出来参考和引用。

RAG 的知识库数据就是单独放在外面,提什么问你就去搜什么数据,跟我们写论文很像。

在问答系统中,RAG可以利用最新的数据和信息来生成更准确的答案,弥补大模型在知识更新方面的不足。

微调(Fine-Tuning)

其实微调中的数据才是直接给大模型喂进去。

微调大模型是把你喂进去的数据消化成了规律,固定在它的参数里。

其实在微调之前,真正做大模型的厂商已经做过了一步,叫做预训练

  • 这一步用了大量的算力数据让他有了基础知识。

微调它是把接收到的信息压缩成了一种规律,把它记住。

  • 那以后能沿着这个规律去做推测。

当需要模型在特定领域或任务中表现更佳时,微调是理想的选择。

  • 例如,在医学领域,通过微调可以让模型更好地理解和生成医学文本。

总结:大模型的学习方式就像选课,文本提示是旁听,RAG是图书馆查资料,微调是请家教。

有啥其他补充的内容,欢迎在评论区留言讨论。

想看技术文章的,可以去我的个人网站:http://hardyfish.top/。

  • 目前网站的内容足够应付基础面试(P6)了!

每日一题

题目描述

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值

差值是一个正数,其数值等于两值之差的绝对值。

解题思路

中序遍历 目标二叉搜索树,每轮计算相邻节点的差值,并取最小。

在二叉搜索树中,左 < 根 < 右。

因此,最小差值,一定是相邻两个节点的差值。

而 中序遍历,则保证了 上一轮遍历的根 与 当前遍历的根 相邻(为父子关系)。

代码实现

Java代码:

class Solution {
    private int preNodeValue = -1;
    private int result = Integer.MAX_VALUE;
    public int getMinimumDifference(TreeNode root) {
        inorder(root);
        return this.result;
    }
    private void inorder(TreeNode root) {
        if (root == null) {
            return;
        }
        inorder(root.left);
        if (this.preNodeValue != -1) {
            // 因为是 二叉搜索树,且为 中序遍历
            // 因此 左 > 根 > 右,(root.val - this.preNodeValue) 必为正值
            this.result = Integer.min(root.val - this.preNodeValue, this.result);
        }
        this.preNodeValue = root.val;
        inorder(root.right);
    }
}

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值