随着人工智能(AI)技术的迅猛发展,大模型算是当之无愧最火的一个方向了。对于普通人来说。 这是一个绝佳的机会来提升自己的职业前景和经济状况。
一、AI大模型:未来的科技趋势
1.1 什么是AI大模型?
AI大模型通常指的是那些拥有数以亿计甚至更多的参数,并且可以处理海量数据的神经网络模型。这些模型通过在大规模数据集上进行训练,能够执行各种复杂的任务,如自然语言处理(NLP)、计算机视觉、语音识别等。例如,GPT-3就是一个拥有1750亿个参数的大型语言模型。
1.2 AI大模型的应用场景
AI大模型已经在多个领域展现了巨大的潜力:
- 自然语言处理(NLP):包括机器翻译、问答系统、文本生成等。例如,智能客服、自动摘要生成、智能写作助手等应用。
- 计算机视觉:如图像分类、目标检测、视频理解等。例如,自动驾驶汽车、医学影像分析、安防监控等。
- 语音识别与合成:实现语音转文字和文字转语音的功能。例如,智能音箱、语音助手等。
- 跨模态任务:结合文本、图像、声音等不同类型的数据进行综合分析。例如,多模态对话系统、智能推荐系统等。
二、为什么选择AI大模型领域?
2.1 高需求和高薪资
随着AI技术的广泛应用,对能够开发、优化和应用这些大模型的专业人才需求日益增加。根据市场分析,AI大模型算法工程师的薪资普遍较高。在中国,这类岗位的年薪范围大致在20万至100万元人民币之间,具体取决于工作经验、学历背景以及所在城市等因素。
2.2、大模型热门岗位
1. 模型研发工程师
模型研发工程师的核心任务是设计和开发新的深度学习模型架构。这包括但不限于研究最新的模型论文,理解并复现复杂的模型结构,以及在此基础上进行创新改进。此外,工程师还需要关注模型训练过程中的性能优化,确保模型在有限的计算资源下达到最佳效果。
岗位要求:
- 计算机科学或相关专业背景,本科以上学历;
- 精通Python编程,熟练掌握TensorFlow、PyTorch等深度学习框架;
- 具备良好的数学基础,尤其是线性代数、概率论和微积分;
- 有较强的研究能力和创新精神,能够独立解决技术难题。
选择原因: 对于那些对模型架构有深入理解,喜欢创新和设计的程序员来说,模型研发工程师是一个理想的岗位。它不仅能够让你在技术深度上有所突破,还能让你参与到前沿技术的研究与开发中。
应用领域: 计算机视觉、语音识别、自然语言处理、推荐系统等。
适合人群: 对算法设计有浓厚兴趣,具备一定研究能力的程序员。
2. 算法工程师
算法工程师的工作重点在于将理论算法转化为实际可用的解决方案。这包括算法的实现、调试、优化以及与实际业务场景的结合。算法工程师需要具备良好的问题分析能力,能够针对不同的业务需求选择合适的算法。
岗位要求:
- 掌握机器学习算法和统计学基础;
- 熟悉数据处理和分析工具,如Pandas、NumPy;
- 有良好的编程能力,能够高效实现算法。
选择原因: 如果你喜欢解决具体问题,对算法应用有热情,那么算法工程师是一个不错的选择。这个岗位能够让你在实际项目中发挥算法的力量,创造实际价值。
应用领域: 金融风控、广告投放、智能医疗、电商推荐等。
适合人群: 具备扎实数学基础,善于数据分析的程序员。
3. 数据科学家
数据科学家使用大模型进行数据分析和预测,为决策提供科学依据。工作内容包括数据清洗、特征工程、模型训练、结果解释等。
岗位要求:
- 熟悉数据分析流程和机器学习算法;
- 具备良好的统计学知识;
- 能够使用数据可视化工具,如Matplotlib、Seaborn等。
选择原因: 对于对数据分析感兴趣,想要结合模型进行深入分析的程序员来说,数据科学家是一个充满挑战和机遇的岗位。
应用领域: 市场分析、用户行为分析、商业智能等。
适合人群: 具备数据分析背景,对数据敏感的程序员。
4. AI产品经理
AI产品经理负责定义和推动AI产品的开发,包括市场调研、产品规划、需求管理、项目协调等。
岗位要求:
- 了解AI技术和市场趋势;
- 具备产品管理经验,能够跨部门沟通和协调;
- 有商业洞察力和用户同理心。
选择原因: 适合希望从技术转向管理,同时保持与AI技术紧密联系的程序员。
应用领域: 所有需要AI技术驱动的产品和服务。
适合人群: 具备技术背景,同时具备良好沟通和项目管理能力的程序员。
5. 机器学习工程师
机器学习工程师负责构建和维护机器学习系统,包括设计实验、实现算法、训练模型、优化模型以及将模型部署到生产环境中。他们还需要处理数据管道和监控模型的性能。
岗位要求:
- 熟悉机器学习流程和常见算法;
- 有实际项目经验,能够处理数据预处理和特征工程;
- 熟练使用机器学习框架和工具,如scikit-learn、XGBoost等;
- 了解模型部署和维护的相关技术。
选择原因: 适合对机器学习全流程感兴趣,希望将算法转化为实际产品的程序员。
应用领域: 自动驾驶、智能助手、物联网数据分析等。
适合人群: 对机器学习有全面了解,具备系统思维和工程能力的程序员。
6. 深度学习工程师
深度学习工程师专注于深度神经网络的设计、训练和应用。他们通常处理更复杂的数据类型,如图像、视频和音频,并开发能够处理这些数据的先进模型。
岗位要求:
- 精通深度学习理论和实践,包括CNN、RNN、GAN等;
- 有处理大规模数据集的经验;
- 熟练使用深度学习框架,如TensorFlow或PyTorch;
- 了解GPU加速和模型优化技巧。
选择原因: 适合对深度学习技术有浓厚兴趣,希望在这个领域深入发展的程序员。
应用领域: 计算机视觉、语音识别、游戏AI、自动驾驶等。
适合人群: 对神经网络有深入理解,喜欢解决复杂数学问题的程序员。
(当然,还有一些其他的热门岗位,感兴趣的朋友也可以自己去招聘网站上看看)
转行大模型领域,可以根据自己的兴趣、技能和职业规划选择合适的岗位。每个岗位都会面临不同的挑战和机遇,关键在于不断学习和实践,以适应这个快速变化的技术领域。
三、 大模型学习路线规划
第一阶段:基础理论入门
目标:了解大模型的基本概念和背景。
内容:
人工智能演进与大模型兴起。
大模型定义及通用人工智能定义。
GPT模型的发展历程。
第二阶段:核心技术解析
目标:深入学习大模型的关键技术和工作原理。
内容:
算法的创新、计算能力的提升。
数据的可用性与规模性、软件与工具的进步。
生成式模型与大语言模型。
Transformer架构解析。
预训练、SFT、RLHF。
第三阶段:编程基础与工具使用
目标:掌握大模型开发所需的编程基础和工具。
内容:
Python编程基础。
Python常用库和工具。
提示工程基础。
第四阶段:实战项目与案例分析
目标:通过实战项目深化理论知识和提升应用能力。
内容:
实战项目一:基于提示工程的代码生成。
实战项目二:基于大模型的文档智能助手。
实战项目三:基于大模型的医学命名实体识别系统。
案例分析:针对每个实战项目进行详细的分析和讨论。
第五阶段:高级应用开发
目标:掌握大模型的高级应用开发技能。
内容:
大模型API应用开发。
RAG (Retrieval-Augmented Generation)。
向量检索与向量数据库。
LangChain、Agents、AutoGPT。
第六阶段:模型微调与私有化部署
目标:学习如何对大模型进行微调并私有化部署。
内容:
私有化部署的必要性。
HuggingFace开源社区的使用。
模型微调的意义和常见技术。
第七阶段:前沿技术探索
目标:探索大模型领域的前沿技术和未来趋势。
内容:
多模态模型。
参数高效微调技术。
深度学习框架比较。
大模型评估和benchmarking。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓