自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(684)
  • 收藏
  • 关注

原创 2026年高薪秘籍:AI应用开发工程师,普通人如何精准选择,实现薪资增长?

人生的每一次关键抉择,都在悄然改写未来的轨迹。尤其在职业道路上,方向的精准度往往比单纯的努力更能决定收入的上限。当2026年的职场竞争已然拉开序幕,哪个行业岗位能让普通人稳稳锁定高薪机会?答案清晰而明确——AI应用开发工程师。

2026-01-07 09:15:00 1238

原创 千万别再乱学大模型了!给大龄程序员的一份2026保命指南,体系化路径我画好了!

在全球AI技术迅猛迭代的浪潮下,人工智能正以颠覆性势能重塑各行各业,软件开发领域首当其冲成为变革前沿。作为企业级应用开发的中坚力量,Java工程师群体既亲身见证着AI驱动的效率革命——代码生成、自动化测试等工具大幅提升开发产能,也深陷职业发展的双重压力:基础开发岗位被AI工具持续挤压,市场对初级Java开发者的需求逐年缩减,技能更新迭代速度远超以往认知……

2026-01-07 09:15:00 702

原创 【万字长文】2025年大模型行业全景解析:从阿里千问到Gemini 3 Pro!

文章分析了AI大模型行业的最新发展,包括阿里千问APP对标ChatGPT、Google Gemini 3 Pro的突破性进展,以及AI在C端入口争夺和B端生产力工具的应用趋势。数据显示,全球AI应用市场头部格局稳定,但中下游竞争激烈,视频生成与多模态创作类产品表现突出。国内大模型中标项目快速增长,商业化进程加速,并提供了AI大模型学习资源,帮助小白和程序员掌握技术,实现就业转型。

2026-01-07 09:00:00 1697

原创 揭秘提示词工程背后的秘密:提示词工程为啥是工程?

本文通过AI Humanizer项目案例,探讨提示词工程的本质。文章指出,虽然网上存在大量现成提示词,但真正的工程化需要系统方法论:从检测AI生成内容的原理分析(困惑度与爆发性指标),到基于结构语言学的四层架构设计(词汇、短语、句法、语篇),再到具体技巧选择(如Domain-Hopping和Verbalized Sampling)和验证迭代流程。最终说明,提示词工程的价值不在于简单复制粘贴,而在于完整的工程化思维体系,包括框架设计、技术选型、参数调优和持续优化能力,这正是企业招聘提示词工程师的核心要求。

2026-01-07 08:45:00 929

原创 大模型核心技术详解:词嵌入与注意力机制零基础入门指南!

文章介绍了大模型的两大基础概念:词嵌入将token转换为向量表示,维度越多表达越准确;注意力机制计算token间的注意力分数,确定其在句子中的比重并生成句子嵌入向量。文中提供了完整代码示例,指出词嵌入随机生成会导致理解不一致的问题,将在自注意力机制章节解决。同时提供了AI大模型学习资源包,适合不同基础的学习者。

2026-01-07 08:30:00 563

原创 2026年AI求职策略解析:回顾2025年百万年薪岗位竞争态势,提供传统岗位转型与避免被替代的全方位指南!

“金三银四”的求职旺季里,人工智能领域的就业市场正上演着真实的“冰火博弈”。一边是算法工程师等核心岗位的抢人战愈演愈烈,百万年薪从传说变为常态;另一边是传统岗位遭遇AI替代的猛烈冲击,“隐形失业”的阴影悄然蔓延。在这场技术重构职场的浪潮中,如何精准踩中机遇风口、避开替代陷阱?本文结合最新行业数据与实战案例,拆解AI就业的趋势密码与突围策略。

2026-01-06 09:15:00 1580

原创 别再纠结了!关于大模型和AGI的所有疑问,收藏这一篇足够!(2026最新版)

“我们投入这么多,究竟是在追逐一个噱头,还是真正在布局未来?大模型和AGI到底是什么关系?”据最新行业调查显示,超过65%的技术从业者对大模型和AGI的基本概念存在混淆,而超过80%的企业决策者对如何将这些技术转化为实际商业价值感到困惑。

2026-01-06 09:15:00 759

原创 大模型上下文工程完全指南:从“不知道“到“知道太多“的困境与解决方案!

随着大模型上下文窗口从稀缺到过剩,AI开发面临从模型"不知道"到"知道太多"的转变。长上下文处理中的"Lost in the Middle"问题导致模型对中间信息利用率下降,影响Agent实际表现。作者提出"上下文工程"作为解决方案,并分享五大实践:上下文卸载、压缩、任务隔离、分层动作空间和精细化Prompt,强调在大模型落地中,精密的上下文工程比单纯依赖模型参数规模更为重要。

2026-01-06 09:00:00 565

原创 MIT递归语言模型(RLM)突破上下文限制,实现高效长文本处理!

MIT提出的递归语言模型(RLM)通过将长提示词视为外部变量,利用Python REPL环境让LLM编写代码来观察、切分和递归调用自身处理文本片段。这种架构突破了传统模型的上下文窗口限制,在处理千万级Token任务时性能远超GPT-5等前沿模型,且推理成本更低。RLM通过"代码先行,模型殿后"的策略,实现了性能与成本的双赢,为长文本处理提供了全新思路。

2026-01-06 08:45:00 1672

原创 2025-2026大模型Agent革命:从Chatbot到自主执行的技术跃迁与实战指南!

Agent RL技术正引领AI从Chatbot时代跃迁至自主执行时代。2025-2026年,预训练将进入"存量精耕"阶段,后训练全面迈入RL时代,多轮任务处理成为核心挑战。成功的Agent需要顶级算法、强悍Infra、云服务工程等六大核心能力支撑。未来Agent将朝并行化与异步化方向发展,构建"探索-验证-再探索"的技术飞轮。长期主义投入才是获取AI技术红利的唯一途径。

2026-01-06 08:45:00 698

原创 LLM与AIGC入门指南:AI大模型学习路线图,超详细!助你迅速掌握AI领域核心技能!

麦肯锡的方法论强调深入分析和全面理解一个行业。在大型语言模型(LLM)和人工智能生成内容(AIGC)的领域,列出100个最重要的概念是一个庞大的任务,但我可以提供一份精简的关键概念列表,这些概念是理解这些领域的基础。

2026-01-05 13:49:22 1332

原创 从咨询顾问到AI大模型:我为何在这个冬天选择全力投入?深度解析职业转型的原因与前景!

文章探讨了咨询顾问如何在AI大模型时代实现转型,指出企业急需的是能将大模型落地到具体业务场景的"应用型人才"。咨询顾问凭借结构化思维、业务理解力和沟通能力等优势,在AI时代反而比纯技术人员更有竞争力。文章提供了非技术人员转型AI的四个阶段路径和学习路线图,强调正确的学习顺序对职业发展的重要性,并分享了相关学习资源。

2026-01-05 13:46:37 940

原创 mHC:DeepSeek残差连接革命性改良方案,提升大模型性能的关键技术解析!

本文解析DeepSeek提出的mHC架构,这是对传统残差连接的创新改进。mHC通过双随机矩阵限制信息增强幅度,解决了HC架构训练不稳定问题,同时保留信息扩容能力。实验表明,mHC模型在计算成本可控的情况下实现更优性能,Loss显著降低,下游任务分数更高。这一架构创新性地将残差流信息容量与计算复杂度解耦,为神经网络设计提供了新思路。

2026-01-05 13:45:18 926

原创 【大模型实战】智能体客服Agent多轮对话设计:从不确定性到可控系统的工程实践!

文章核心内容是关于如何设计智能体客服Agent的多轮对话流程,强调将不确定的自然语言交互转化为可控、可观测、可回滚的工程系统。内容包括明确系统边界、设计清晰的多轮对话流程、使用会话状态跟踪方法、处理用户意图模糊情况,并注重可观测性、降级与回滚等工程实践。核心思想是通过结构化设计和状态管理,确保客服系统在提供服务的保持高稳定性和可靠性。

2026-01-05 13:33:43 588

原创 万字长文!大语言模型LLM如何用数学解决工业场景问题!

本文详细解析了大语言模型(LLM)的数学原理和训练过程,从Transformer架构到自注意力机制,从神经网络基础到反向传播算法,深入浅出地解释了LLM如何利用数学解决工业问题。同时探讨了大规模训练集群的必要性及GPU并行训练技术,包括数据并行、模型并行和流水线并行等策略,为理解大模型训练提供了全面的技术视角。

2026-01-05 11:57:51 914

原创 连夜整理!20道核心面试题详解(Transformer/LoRA/RAG/推理优化),揭秘面试官亲述的高频考点!

本文介绍了大模型基础篇和微调篇的核心知识点。基础篇涵盖Transformer架构及其核心组件(自注意力、多头注意力、位置编码等)、Self-Attention与Cross-Attention的区别、Layer Normalization原理、位置编码机制以及常见Tokenizer类型。微调篇重点解析了LoRA方法的低秩适配原理,并对比了全量微调、LoRA和QLoRA在参数量、显存占用和训练效果上的差异。文章通过简明问答形式,系统梳理了大模型关键技术要点,适合作为大模型学习和面试的参考资料。

2026-01-04 13:50:34 792

原创 秋招实战分享:大厂AI岗位面试真题全解析,深度涵盖LLM/VLM/RLHF/Agent/RAG等核心知识点!

本文是面向2025年秋招的大模型工程师岗位面试题合集,涵盖LLM/VLM/RLHF/Agent/RAG等全链路技术栈。问题来自真实面试经历,分为七大模块:大模型理论、视觉语言模型、强化学习对齐、Agent架构、检索增强生成、模型评估及发展前景。建议读者先独立思考问题,再对照参考答案查漏补缺,系统掌握大模型面试必备知识,备战2025秋招。

2026-01-04 11:53:10 1137

原创 2025年AI医疗领域十大融资事件揭晓:资本疯狂涌入,这几大市场成为投资新宠!

2025年AI医疗赛道迎来爆发式增长,成为资本最青睐的领域。OpenEvidence创下估值神话,1年内从10亿飙升至120亿美元;Neuralink完成6亿美元融资推进脑机接口;Isomorphic Labs获6亿美元投资开发AI制药技术。行业呈现三大趋势:1)从技术展示转向临床价值验证;2)资源向头部企业集中;3)AI与制药、脑机接口等深度结合场景最受追捧。其他明星企业包括电子病历独角兽Abridge(53亿美元估值)、AI科学平台Lila Sciences(融资5.5亿美元)等,显示出AI正深刻重塑医

2026-01-04 11:50:10 882

原创 大模型知识增强技术:RAG与CAG工作原理、优劣对比及选型指南!

文章介绍了大模型知识增强的两种核心技术:检索增强生成(RAG)和缓存增强生成(CAG)。RAG通过实时检索外部数据库获取最新信息,适合处理动态数据;CAG则预加载信息到缓存中,响应更快但可能存在信息过时问题。文章对比了两种技术的工作原理、优势、局限性及适用场景,提供了各行业应用案例,探讨了混合方案的可能性,帮助开发者根据业务需求做出技术选型。

2026-01-04 11:48:59 979

原创 AI Agent记忆系统完全指南:解决上下文限制,打造个性化智能助手!

本文详细解析了AI Agent记忆系统的架构与实现,包括短期记忆(会话级)和长期记忆(跨会话)的核心概念、技术特性和集成方法。针对大模型上下文限制问题,介绍了缩减、卸载、隔离三大上下文工程策略,探讨了长期记忆与RAG的区别,对比了主流开源产品,并展望了记忆即服务(MaaS)和多模态融合等发展趋势,为构建高智能AI Agent提供了技术支撑。

2026-01-04 11:45:57 599

原创 8大主流RAG技术架构详解,小白也能轻松掌握大模型知识增强!

本文详细解析RAG技术如何通过外部知识库检索增强大语言模型能力,解决知识固化与幻觉问题。对比8种主流架构:朴素RAG适合简单问答,多模态RAG处理跨模态数据,HyDE弥合语义鸿沟,校正RAG提升信息准确性,知识图谱RAG增强逻辑推理,混合RAG融合多种检索方式,智能路由RAG动态优化资源,智能体协作RAG处理复杂任务。选择架构需根据数据、查询类型和任务需求决定。

2026-01-03 08:15:00 878

原创 MCP:打破大模型信息孤岛,构建安全高效的AI智能生态!

MCP(模型上下文协议)是一种开放协议,解决了大模型的"信息孤岛"困境,使其能够安全、高效地接入外部系统。通过标准化交互规范,MCP实现了工具能力的"即插即用",大幅降低了开发成本,提升了企业数据安全边界。对开发者而言,MCP避免了重复造轮子;对企业而言,实现了安全可控的AI集成;对用户而言,提供了更强大的AI助手体验。作为AI Agent的基石,MCP将催生新一轮应用创新潮,构建互联互通的智能生态。

2026-01-03 08:00:00 1659

原创 LangChain框架详解:零基础入门大模型应用开发!

LangChain是开发大模型应用的开源框架,提供模块化组件和完整生命周期支持。其核心库包括langchain-core、集成包、langchain、langchain-community和langgraph。主要组件有Chains、Memory、Prompt Templates、Agents、Tools和LLMs,支持构建智能对话机器人、知识问答系统等多种应用场景。通过标准接口,LangChain可集成多种大模型、嵌入模型和工具,帮助开发者高效创建复杂的自然语言处理应用程序。

2026-01-02 08:30:00 960

原创 智能体是什么?ReAct范式详解与大模型开发必知!

本文解析了AI智能体的概念及ReAct范式。智能体是通过传感器感知环境并通过执行器作用于环境的系统,而ReAct则是将推理与行动交错联合的智能体基础范式。其工作流程为思考(Thought)->行动(Act)->观察(Observation),LLM作为规划器自主生成推理和行动计划,通过工具与外界交互获取信息,形成闭环反馈机制。这一范式使大模型能更有效地完成复杂任务。

2026-01-02 08:00:00 593

原创 Transformer架构详解与大模型学习路线图:从原理到实战项目全攻略!

文章系统介绍了Transformer架构的三种主要类型:纯编码器(BERT)、纯解码器(GPT)和编码器-解码器(T5/BART),详细解析了自注意力机制、前馈层和位置嵌入等核心组件。同时提供了AI大模型学习的系统路径,从系统设计、提示词工程到平台应用开发、知识库构建、模型微调及多模态应用,为读者提供了从理论到实践的完整学习指南,适合小白和程序员入门大模型领域。

2026-01-01 08:15:00 933

原创 RAG技术深度解析:增强大模型回答能力,构建高效可靠的检索增强生成应用!

文章详细介绍了RAG(检索增强生成)技术,通过检索外部知识库信息增强大模型回答能力,解决知识局限性和幻觉问题。内容包括RAG架构、工作流程及高级技术(分块、向量化、搜索索引等),RAG融合技术优缺点,编码器和LLM微调方法,以及RAG系统评估框架,帮助构建高效可靠的RAG应用。

2026-01-01 08:00:00 787

原创 【二万字长文】非AI背景也能玩转大模型:这篇文章带你学会大模型应用开发!

本文为非AI背景开发者提供大模型应用开发入门指南,介绍了提示词工程、Function Calling、RAG技术及MCP协议等核心内容。强调开发者无需深厚AI知识即可参与,指出RAG是产品核心竞争力所在,而开发MCP-Server则是普通程序员可参与的机会点。通过学习这些技术,开发者可跟上AI时代步伐,在实际业务中发挥大模型价值。

2025-12-31 09:30:00 876

原创 手机上的AI革命!这个Github项目让你轻松运行本地大模型!

Nexa SDK是一套端侧AI开发工具包,让AI直接在设备上运行,解决云端AI的依赖网络、隐私泄露和延迟三大痛点。它支持移动端隐私AI管家、PC端本地知识库和全场景多模态应用,提供毫秒级响应、100%隐私保护和超低功耗。通过一站式解决方案,Nexa SDK实现了"一次开发,全设备运行",让非专业开发者也能快速部署端侧AI应用,推动AI向"无需联网、无需付费、随取随用"的未来发展。

2025-12-31 09:15:00 939

原创 附学习资源 | AI大模型开发学习路线图!

AI 大模型应用开发作为新兴领域,不断出现新的技术:LLM、Prompt、RAG、Agent、Fine-tuning、MCP 等,本文聚焦 AI 大模型应用开发,带领大家入门,带领大家了解 AI 大模型应用开发的全攻略。

2025-12-31 09:15:00 1783

原创 大模型提示词(Prompt)工程入门到精通,小白也能轻松掌握!

本文详细介绍了大模型提示词(Prompt)工程的核心知识,包括提示词的基本概念、编写原则和CO-STAR结构化方法。通过具体案例展示了如何优化提示词质量,以及在工作流中的应用技巧。文章强调好的提示词能显著提升大模型输出质量,无需编程技能即可通过直接人类语言实现与大模型的高效交互,让AI成为诗人、助手或专家,是小白和程序员学习大模型的必备技能。

2025-12-31 09:00:00 970

原创 大模型微调的秘密武器:零代码打造高质量数据集,easy-data助你一臂之力!

easy-dataset是字节开源的大模型数据集构建工具,支持PDF、Word等多种文档格式转换,提供智能文献处理、AI辅助数据生成、领域标签体系等功能,可大幅提升数据集构建效率,帮助用户将领域文献转化为高质量结构化数据集,支持多种格式导出和模型评估,适用于大模型微调场景。

2025-12-31 08:45:00 573

原创 都说卷不动了?AI大模型或是程序员下半场的唯一破局点!

“我们团队最年轻的大模型工程师只有25岁,年薪却已经接近百万。”一位来自头部互联网企业的技术总监透露,“但一位35岁的传统Java开发工程师,投出上百份简历却很难获得面试机会。”这种强烈的对比正发生在2025年的技术圈。猎聘数据显示,AI相关职位同比增加321.7%,而大模型算法岗位人才供需比仅为0.17,相当于6个岗位争夺1个人才。与此同时,传统开发岗位的需求正在萎缩。

2025-12-30 11:20:12 1375

原创 后端开发者的春天在哪里?面对70:3的面试挑战与薪资下滑,掌握这3大策略逆袭市场!

“我有8年传统Java开发经验,被裁后投了300多份简历,210天里只收到5次面试邀请。有家小公司愿意录用,但月薪从之前的1.5万降到1万,还取消了年终奖和补充医疗——他们说现在更想要懂AI开发的人。”

2025-12-30 11:16:49 616

原创 【五万字详解】大模型技术全攻略:从语言模型到性能优化,一文掌握大模型核心技术!

文章系统介绍了大模型从语言模型到生成式模型的发展历程,详细解析了Transformer架构、Bert与GPT模型的区别,以及对话式GPT的训练方法。重点分享了模型训练、推理和性能优化的核心技术,包括连续批处理、分块注意力机制、分布式训练等,并结合实践分析了优化策略在显存效率、吞吐量及训练加速中的应用效果,以及roofline模型分析和定位瓶颈等内容。

2025-12-30 11:13:48 942

原创 知识库系统构建指南:从RAG到大模型应用的全景解析!

知识库是大模型应用的核心组件,独立于模型存在。构建知识库既是技术问题也是哲学问题,确保系统高可用和易管理。知识库不仅适用于RAG,也广泛应用于智能体、AIGC等场景,能扩展模型能力边界,提高效率。模型与知识库关系犹如能力强的人与后勤保障,两者结合构建超越模型本身的智能系统。知识库应按需建设,不必追求大而全。

2025-12-30 11:11:48 449

原创 AI Agent蜕变之路:接入Dify知识库,打造智能私人助理的终极指南!接入Dify知识库实现RAG!

本文介绍了如何为AI Agent接入Dify知识库实现RAG功能,区分了Agent的"记忆"与"知识"概念。通过实战演示,展示了创建知识库、编写检索工具及将新技能加入Agent的过程。最终,Agent同时拥有了记忆和知识,成为真正智能的私人助理。文章强调了"万物皆可为工具"的通用赋能方法,是学习大模型应用的实用指南。

2025-12-30 11:10:20 926

原创 大模型时代AI职业全景:从算法研究到Agent开发,揭秘大厂JD与就业趋势!

近两年来,大模型技术如同一场汹涌的浪潮,席卷了整个科技领域,热度始终居高不下。在这股浪潮的推动下,科技圈掀起了一股“跨界内卷”热潮——无论是深耕传统软件开发的Java工程师、C++工程师,专注用户界面搭建的前端开发者,还是擅长数据挖掘与分析的数据分析师、搭建系统骨架的架构师,纷纷将目光投向大模型领域,希望在这片新蓝海中找到职业突破的机会。

2025-12-29 09:00:00 549

原创 AI大模型领域转型指南:程序员如何成为大模型应用工程师,揭秘角色定位与未来前景!

随着人工智能技术的飞速发展,大模型已成为当今科技领域的核心驱动力。在这一浪潮下,大模型应用工程师这一新兴职业崭露头角,备受瞩目。那么,究竟什么是大模型应用工程师?他们的就业前景如何?薪资待遇怎样?又该如何规划自己的职业发展道路?接下来,让我们一同深入探讨。

2025-12-29 08:45:00 1281

原创 LangGraph:从链式思维到代理思维的LLM开发范式革命!

LangGraph代表LLM应用开发从线性链式到代理思维的根本转变,通过引入"循环"概念使AI具备自我修正能力。其核心架构包含状态管理(State)、工作单元(Nodes)、决策中心(Conditional Edge)、持久化机制(Checkpointer)和分形扩展(Subgraph)。这一框架打破了传统流水线式开发限制,实现了AI的循环迭代思考,并支持时间旅行和人机协作,为构建复杂智能体系统提供了强大工具。

2025-12-29 08:30:00 818

原创 Transformer架构深度解析:10道核心面试题,助你掌握机器学习精髓!

Transformer架构作为现代大语言模型的基础,其设计理念和核心组件是每个AI从业者必须掌握的知识点。本文精选了10道关于Transformer架构原理的经典面试题,每道题都配有详细解答,帮助读者系统掌握Transformer的核心概念。

2025-12-29 08:15:00 786

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除