LLM(large language model)技术发展到今天,已经有许多代码和权重都开源的模型(如llama2等)供开发者下载使用。语言模型的本质是通过算法预测下一个位置上出现概率最高的字或词,LLM的预训练阶段通常是无监督或自监督的,例如通过bert模型完成类似于完型填空的任务,数据通常来源于互联网上的大量预料。预训练后的LLM已经具备了基础的语言理解或预测能力,但可能存在输出不符合人类表达习惯或道德准则,或在特定场景或垂直领域(比如数学计算,推理等)中的表现不尽人意等问题。这就需要对预训练后的大模型进行一些微调。
SFT(Supervised Fine-Tuning)有监督微调
-
定义:SFT 是指使用有监督的标注数据集对预训练的大型语言模型进行微调的过程。通过监督学习,模型可以更好地在特定任务中进行预测。
-
过程:
-
构造有监督数据集,like:{<input1, output1>,<input2, output2>,<input3, output3>}。数据可能包括问答配对、对话实例、分类任务的标签等。
-
对模型进行有监督训练或微调,模型学习如何根据给定的输入生成最接近目标的输出。
-
局限:模型在生成输出时仅依赖于标注数据,容易受到训练数据的限制,不具备灵活处理用户反馈的能力。
RLHF(Reinforcement Learning from Human Feedback)人类反馈强化学习
-
定义:RLHF 通常在SFT之后进行,是通过人类反馈来优化模型行为的一种强化学习方法,旨在让模型生成的内容更符合人类的偏好和期望,更符合人类道德、价值观。
-
过程:
-
生成候选输出:模型生成多个可能的输出。
-
人类反馈:让人类评审员对这些输出进行打分或排序,标注哪些输出更符合预期。
-
奖励模型训练:基于人类反馈训练一个“奖励模型”,它能够自动评估模型输出的质量。
-
强化学习优化:使用强化学习算法(如PPO)调整模型参数,优化其策略以获得更高的“奖励”(即更符合人类偏好的输出)。
- 局限:RLHF过程需要大量人类反馈,RLHF 的训练成本较高。
Align(对齐)
-
定义:Align 是指将模型的输出与人类的期望、价值观、道德标准等进行对齐,确保模型生成的内容不仅在技术上正确,还能在伦理和社会层面上符合人类的需求。
-
Align 通常结合 SFT 和 RLHF 来实现,通过这两种方法来不断优化模型的输出,使其与人类期望保持一致。
-
目标:
-
确保模型输出不会带来负面社会影响,如偏见、仇恨言论、不当信息等。
-
提升模型的可用性和安全性,避免产生有害或误导性的内容。
-
具体方法:
-
SFT 阶段:通过带有良好标注的训练数据,对模型进行有监督的微调,以学习安全和有益的行为。
-
RLHF 阶段:通过人类反馈强化模型,使其生成内容更符合人类伦理和道德标准。
- 例子:模型不应该回答一些可能危害人类安全健康的问题,例如,当用户提问“如何制作炸弹”时,模型应对该问题进行回避。
RAG(Retrieval-Augmented Generation)搜索增强
-
定义:RAG是一种结合信息检索和文本生成的大型语言模型(LLM)架构。RAG 通过将预训练的语言生成模型(如 GPT)与信息检索组件结合,使得模型可以动态地从外部知识库中检索相关信息,并将这些信息融入到生成的文本中,可以提高LLM在特定垂直领域的表现。
-
实现:
-
知识库准备:某个文档按照段落或其他方式合理地分割成若干块(chunks),将每个chunks embedding成向量的形式存储在向量数据库中。
-
知识库检索:当用户问了一个问题时,也是先把用户的问题embedding成向量,然后在向量数据库中检索有可能包含该问题答案的chunks,可以让数据库返回多个可能性较高的chunks。
-
回答形成:这些chunks作为上下文context与之前的问题向量一起组成prompt,再将prompt输入到大模型中,生成最终的回答或文本。这些检索到的文档或片段为模型提供了额外的上下文信息。
-
特点:
1. 普通生成模型(如 GPT-3)仅依赖于其预训练的内部知识,而 RAG 依赖知识库,可以动态地检索外部信息,生成更符合当前现实和知识背景的内容。
2. 不需要微调模型,算力开销小。
3. 表现依赖于检索的质量,若检索到的文档不相关或错误,生成的文本可能会偏离主题或包含误导性信息。
微调(Fine-tuning)
-
定义:是指在已经预训练的模型基础上,通过进一步的训练使其适应特定任务或领域的过程。
-
实现:
1. 全参数微调(Full Fine-Tuning) 对预训练模型的所有参数进行微调。这种方式可以充分利用模型的能力,适应特定任务。
优点:效果通常最佳,因为模型能够完全调整以适应新任务。
缺点:需要较多的计算资源和时间。
2. 冷冻部分参数(Freezing Layers) 仅微调模型的某些层,其他层保持不变。通常会冻结底层,微调顶层。
优点:减少计算资源需求,降低过拟合风险。
缺点:可能无法充分挖掘预训练模型的潜力,性能可能不如全参数微调。
3. 适配器(Adapters) 在预训练模型的某些层中插入小型适配器网络,仅微调适配器的参数,而不更改主模型的权重。
优点:参数量小,灵活性高,允许多任务共享同一基础模型。
缺点:适配器的设计和插入位置需要经验,可能对性能有影响。
4. 知识蒸馏(Knowledge Distillation) 通过训练一个较小的模型(学生模型)来模拟大型预训练模型(教师模型)的输出,学生模型可以在特定任务上进行微调。
优点:生成更小的模型,适合在资源有限的环境中部署。
缺点:小模型的表现可能不如直接微调大模型。
-
3. LoRA微调 (Low-Rank Adaptation) 在模型的某些层中,将权重矩阵进行低秩分解,将更新的参数表示为两个低秩矩阵的乘积,例如。100*100的参数矩阵拆成A100*20 @ B20*100,减少需要调参的参数量。
-
优点:需要更新的参数量少,降低了计算和内存需求。
-
缺点:低秩分解中的秩参数需要仔细选择,不当选择可能影响模型的效果。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓