Deepseek本地部署详细指南!从 Ollama 到个人知识库应用

每个人都能拥有专属 AI 助手,安全高效,开启智能化知识管理新体验。

系统介绍

  1. mbp pro
    在这里插入图片描述

一、Ollama 安装与配置

1.1 跨平台安装指南

Ollama 作为本地运行大模型的利器,支持三大主流操作系统:

# macOS一键安装
# Windows用户
访问官网 https://ollama.com/download 下载安装包

# Linux安装(Ubuntu/Debian为例)
curl -fsSL https://ollama.com/install.sh | sudo bash
sudo usermod -aG ollama $USER  # 添加用户权限
sudo systemctl start ollama    # 启动服务

1.2 服务验证

ollama -v

# 输出ollama version is 0.5.7

出现上述则表示安装成功,可浏览器访问http://localhost:11434/验证

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

二、Deepseek 模型部署

2.1 模型下载与加载

以 deepseek r1 模型为例:

  1. 访问https://ollama.com/library/deepseek-r1,默认为 7b 模型,如需其他模型,可以在当前页搜索所需模型
  2. 模型详情页复制安装命令ollama run deepseek-r1
  3. 安装完成后在终端执行:
ollama run deepseek-r1
# 执行后
pulling manifest
pulling 96c415656d37... 100% ▕██████████████▏ 4.7 GB
pulling 369ca498f347... 100% ▕██████████████▏ 387 B
pulling 6e4c38e1172f... 100% ▕██████████████▏ 1.1 KB
pulling f4d24e9138dd... 100% ▕██████████████▏ 148 B
pulling 40fb844194b2... 100% ▕██████████████▏ 487 B
verifying sha256 digest
writing manifest
success
> > > Send a message (/? for help)
> > > `
> > > 当看到上述提示,即可开始模型对话。
  • mac 后台标识

    在这里插入图片描述

  • win 后台标识

    见任务栏托盘区

2.2 模型验证测试

运行交互式对话测试:

请用Python写一个快速排序算法

当看到完整代码输出,说明模型已成功加载。

硬件要求建议:

  • 最低配置:16GB 内存 + 8GB 显存
  • 推荐配置:32GB 内存 + 16GB 显存(RTX 3060 级别)

三、安装交互 ui

3.1 chatbox
  1. 下载地址chatboxai.app
  2. 配置本地模型
  • 进入设置页面

在这里插入图片描述

  • 选择 ollama api (本地部署)
  • 配置本机地址,默认http://127.0.0.1:11434

在这里插入图片描述

至此即可开启问答模式

3.2 Page Assist 浏览器插件

  1. 安装地址Page Assist - 本地 AI 模型的 Web UI
  2. 安装后简单配置即可开启问答模式,功能丰富,可以参考官方引导
  3. 本插件支持本地知识库建设,因本次使用 Dify 建设,在此不赘述。

在这里插入图片描述

四、Dify 知识库搭建

参考文档地址Docker Compose 部署

4.1 环境准备

1.拉取源代码,准备环境

# mac os
# 克隆 Dify 源代码至本地环境。
git clone https://github.com/langgenius/dify.git

# 进入 Dify 源代码的 Docker 目录
cd dify/docker

# 复制环境配置文件cp .env.example .env

2.启动 Docker 容器(需要先安装 D ocker)

docker compose up -d
# 如果版本是 Docker Compose V1,使用以下命令:
docker-compose up -d

# 正常返回
[+] Running 74/9
 ✔ db Pulled                                                    834.2s
 ✔ sandbox Pulled                                              1120.7s
 ✔ weaviate Pulled                                              526.5s
 ✔ web Pulled                                                   174.0s
 ✔ redis Pulled                                                 893.7s
 ✔ api Pulled                                                  2919.8s
 ✔ worker Pulled                                               2919.8s
 ✔ ssrf_proxy Pulled                                            494.0s
 ✔ nginx Pulled                                                 184.7s
[+] Running 11/11
 ✔ Network docker_default             Created                     0.0s
 ✔ Network docker_ssrf_proxy_network  Created                     0.0s
 ✔ Container docker-db-1              Started                     1.1s
 ✔ Container docker-web-1             Started                     1.1s
 ✔ Container docker-redis-1           Started                     1.1s
 ✔ Container docker-sandbox-1         Started                     1.1s
 ✔ Container docker-weaviate-1        Started                     1.1s
 ✔ Container docker-ssrf_proxy-1      Started                     1.1s
 ✔ Container docker-api-1             Started                     0.7s
 ✔ Container docker-worker-1          Started                     0.7s
 ✔ Container docker-nginx-1           Started                     0.8s

在此阶段可能会遇到下列失败的情况,可以尝试切换源解决 我当时的条件

  1. 修改配置后重启 docker
  2. 办公网环境下
docker compose up -d

[+] Running 9/9
 ✘ web Error        context canceled                             14.9s
 ✘ redis Error      context canceled                             14.9s
 ✘ db Error         context canceled                             14.9s
 ✘ nginx Error      context canceled                             14.9s
 ✘ ssrf_proxy Error context canceled                             14.9s
 ✘ sandbox Error    Head "https://registry-1.do...               14.9s
 ✘ api Error        context canceled                             14.9s
 ✘ worker Error     context canceled                             14.9s
 ✘ weaviate Error   context canceled                             14.9s
Error response from daemon: Head "https://registry-1.docker.io/v2/langgenius/dify-sandbox/manifests/0.2.10": Get "https://auth.docker.io/token?scope=repository%3Alanggenius%2Fdify-sandbox%3Apull&service=registry.docker.io": EOF

解决方法

  • 右上角齿轮图标进入设置 -> Docker engine,在配置中添加
  • 写入以下内容 ocker)

{
  // ...
  "registry-mirrors": [
    "https://docker.hpcloud.cloud",
    "https://docker.m.daocloud.io",
    "https://docker.unsee.tech",
    "https://docker.1panel.live",
    "http://mirrors.ustc.edu.cn",
    "https://docker.chenby.cn",
    "http://mirror.azure.cn",
    "https://dockerpull.org",
    "https://dockerhub.icu",
    "https://hub.rat.dev"
  ]}
4.2 Dify 创建聊天
  1. 访问http://localhost/(默认 80 端口) 进入 dify
  2. 首次进入初始化设置账号密码
  3. 点击 Dify 平台右上角头像 → 设置 → 模型供应商,选择 Ollama,轻点“添加模型”。

在这里插入图片描述

在这里插入图片描述

在配置 url 时,因为是 docker 服务,http://localhost:11434 存在无法访问的情况,可以尝试http://host.docker.internal:11434

4.至此,可以开始创建应用,在主页选择 全部 -> 创建空白应用 -> 填入应用信息即可

在这里插入图片描述

4.3 Dify 知识库创建
  1. 主页选择 知识库 -> 创建知识库 -> 上传知识 -> 等待处理完成

    在这里插入图片描述

  2. 进入聊天应用,选择刚才创建的知识库,即可开始带有私域知识的沟通

在这里插入图片描述

五、应用测试

5.1 翻译场景

1.本地客户端具有部分国际化测试文件需要执行翻译,格式示例如下,多层嵌套的 json 格式,value 为string类型。需要利用大模型对整个 json 文件进行翻译,将中文翻译为英文后按原格式返回


// zh.json
{
  "window": {
    "willUnload": {
      "title": "确认刷新当前页面吗?",
      "message": "系统可能不会保存您做的更改",
      "unload_bt": "重新加载",
      "cancel_bt": "取消"
    }
  }
}
ocker)

2.实际应用测试,以deepseek-r1:7b/14b模型做测试。得到结果如下

3.执行脚本trans.js

const fs = require("fs");
const axios = require("axios");

// 1. 读取本地JSON文件
const readJsonFile = (filePath) => {
  return new Promise((resolve, reject) => {
    fs.readFile(filePath, "utf8", (err, data) => {
      if (err) {
        reject(err);
      } else {
        resolve(JSON.parse(data));
      }
    });
  });
};

const MODEL = "deepseek-r1:14b";

// 2. 调用本地大模型接口进行翻译
const translateText = async (text, key) => {
  let response;
  try {
    console.time(`run worker ${key}`);
    response = await axios.post("http://localhost:11434/api/generate", {
      // model: 'deepseek-r1:7b',
      model: MODEL,
      prompt: `有部分客户端国际化的配置文件,内容为json格式,需要翻译,要求按步骤进行翻译:
      1. 将中文翻译为英文
      2. 保持原有json格式不变,将value替换成翻译后的文本
      3. 你始终以合法的JSON格式响应,返回结果格式如: {"key1":"翻译后的文本1","key2":"翻译后的文本2"},直接返回结果,不需要符号包裹
      配置文件
      """${JSON.stringify(text)}"""`,
      stream: false,
    });
    console.timeEnd(`run worker ${key}`);

    const splitText = "</think>";
    const startIndex = response.data.response.indexOf(splitText);
    const result = response.data.response
      .slice(startIndex + splitText.length)
      .trim()
      .replace(/<<+|>>+/g, "");
    // console.log('response.data.response:', response.data.response, JSON.parse(result), result)
    return JSON.parse(result); // 假设接口返回的翻译结果在response.data.translatedText中
  } catch (error) {
    console.error("翻译出错:", key);
    return translateText(text, key); // 如果翻译失败,返回原文
  }
};

// 3. 并行翻译逻辑(手动控制并发)
const translateJson = async (jsonData, concurrency = 5) => {
  const entries = Object.entries(jsonData);
  const translatedData = {};
  let currentIndex = 0; // 当前处理的任务索引

  // 定义工作线程:每个线程不断处理下一个任务
  const worker = async () => {
    while (currentIndex < entries.length) {
      const index = currentIndex++;
      if (index >= entries.length) break; // 所有任务已完成
      const [key, value] = entries[index];
      try {
        translatedData[key] = await translateText(value, key);
      } catch (error) {
        translatedData[key] = value; // 保留原文
      }
    }
  };

  // 启动指定数量的工作线程
  const workers = Array(concurrency).fill(null).map(worker);
  await Promise.all(workers); // 等待所有线程完成

  const result = {};

  // 保持原有顺序
  entries.forEach(([key, value]) => {
    result[key] = translatedData[key] || value;
  });

  return result;
};

// 4. 将翻译后的内容生成新的文件
const writeTranslatedJson = (filePath, data) => {
  return new Promise((resolve, reject) => {
    fs.writeFile(filePath, JSON.stringify(data, null, 2), "utf8", (err) => {
      if (err) {
        reject(err);
      } else {
        resolve();
      }
    });
  });
};

function compareObjectsWithPath(obj1, obj2, path = "") {
  // 类型不同时直接返回路径
  if (typeof obj1 !== typeof obj2) {
    return { success: false, path: path || "root" };
  }

  // 处理可遍历对象(对象或数组)
  if (typeof obj1 === "object" && obj1 !== null && obj2 !== null) {
    const isArr1 = Array.isArray(obj1);
    const isArr2 = Array.isArray(obj2);

    // 数组类型不一致
    if (isArr1 !== isArr2) {
      return { success: false, path: path || "root" };
    }

    if (isArr1) {
      // 数组长度不同
      if (obj1.length !== obj2.length) {
        return { success: false, path: path || "root" };
      }

      // 递归检查数组元素
      for (let i = 0; i < obj1.length; i++) {
        const currentPath = `${path}[${i}]`;
        const result = compareObjectsWithPath(obj1[i], obj2[i], currentPath);
        if (!result.success) return result;
      }
      return { success: true };
    } else {
      // 检查是否为纯对象(字面量对象)
      const isPlainObj1 = isPlainObject(obj1);
      const isPlainObj2 = isPlainObject(obj2);

      if (isPlainObj1 !== isPlainObj2) {
        return { success: false, path: path || "root" };
      }

      // 非纯对象(如 Date、RegExp)需检查是否均为字符串
      if (!isPlainObj1) {
        return typeof obj1 === "string" && typeof obj2 === "string"
          ? { success: true }
          : { success: false, path: path || "root" };
      }

      // 合并所有 key 并检查数量
      const keys1 = Object.keys(obj1);
      const keys2 = Object.keys(obj2);
      const allKeys = new Set([...keys1, ...keys2]);

      if (allKeys.size !== keys1.length || allKeys.size !== keys2.length) {
        return { success: false, path: path || "root" };
      }

      // 递归检查每个属性
      for (const key of allKeys) {
        const currentPath = path ? `${path}.${key}` : key;

        if (!keys1.includes(key) || !keys2.includes(key)) {
          return { success: false, path: currentPath };
        }
        const result = compareObjectsWithPath(
          obj1[key],
          obj2[key],
          currentPath
        );
        if (!result.success) return result;
      }
      return { success: true };
    }
  } else {
    // 基本类型:检查是否均为字符串
    return typeof obj1 === "string" && typeof obj2 === "string"
      ? { success: true }
      : { success: false, path: path || "root" };
  }
}

// 判断是否为纯对象(字面量对象)
function isPlainObject(value) {
  return Object.prototype.toString.call(value) === "[object Object]";
}

// 主函数
const main = async () => {
  console.time("run main");

  const inputFilePath = "./locales/zh.json"; // 输入的JSON文件路径
  const outputFilePath = `output_${MODEL}.json`; // 输出的JSON文件路径

  try {
    // 读取JSON文件
    const jsonData = await readJsonFile(inputFilePath);

    // 翻译JSON内容
    const translatedData = await translateJson(jsonData);

    // 将翻译后的内容写入新文件
    await writeTranslatedJson(outputFilePath, translatedData);

    console.log(
      "翻译完成,结果是否存在遗漏项:",
      compareObjectsWithPath(jsonData, translatedData)
    );
    console.log("翻译完成,结果已写入:", outputFilePath);
  } catch (error) {
    console.error("处理过程中出错:", error);
  }
  console.timeEnd("run main");
};

// 执行主函数
main();

7b


run worker window: 1:16.909 (m:ss.mmm)
翻译出错: window
run worker contextMenu: 1:19.915 (m:ss.mmm)
翻译出错: contextMenu
run worker autoUpdater: 1:24.182 (m:ss.mmm)
run worker menu: 1:54.272 (m:ss.mmm)
run worker openWindowWarn: 2:08.219 (m:ss.mmm)
翻译出错: openWindowWarn
run worker contextMenu: 54.257s
翻译出错: contextMenu
run worker createPreloadFileWarn: 1:05.595 (m:ss.mmm)
翻译出错: createPreloadFileWarn
run worker window: 1:13.320 (m:ss.mmm)
翻译出错: window
run worker openWindowWarn: 42.933s
run worker renderer: 1:06.620 (m:ss.mmm)
run worker contextMenu: 58.129s
run worker createPreloadFileWarn: 51.205s
run worker window: 1:10.067 (m:ss.mmm)
翻译出错: window
run worker window: 17.583s
翻译出错: window
run worker window: 16.479s
翻译出错: window
run worker window: 53.783s
翻译完成,结果是否存在遗漏项: { success: false, path: 'menu' }
翻译完成,结果已写入: output_deepseek-r1:7b.json
run main: 5:08.166 (m:ss.mmm)
![img_1.png](img_1.png)

----------------
run worker openWindowWarn: 27.835s
翻译出错: openWindowWarn
run worker window: 47.317s
翻译出错: window
run worker contextMenu: 1:00.365 (m:ss.mmm)
翻译出错: contextMenu
run worker openWindowWarn: 42.320s
run worker window: 1:00.580 (m:ss.mmm)
翻译出错: window
run worker menu: 2:01.575 (m:ss.mmm)
翻译出错: menu
run worker contextMenu: 1:05.158 (m:ss.mmm)
run worker autoUpdater: 2:08.553 (m:ss.mmm)
run worker createPreloadFileWarn: 1:41.123 (m:ss.mmm)
run worker window: 1:28.518 (m:ss.mmm)
翻译出错: window
run worker renderer: 1:46.725 (m:ss.mmm)
run worker menu: 1:54.031 (m:ss.mmm)
翻译出错: menu
run worker window: 57.867s
run worker menu: 1:16.267 (m:ss.mmm)
翻译完成,结果是否存在遗漏项: { success: false, path: 'menu' }
翻译完成,结果已写入: output_deepseek-r1:7b.json
run main: 5:11.880 (m:ss.mmm)
![img_2.png](img_2.png)

翻译结果

 "window": {
   "willUnload": {
     "title": "What should you confirm before refreshing the current page?",
     "message": "the system might not save your changes",
     "unload_bt": "Reload",
     "cancel_bt": "Cancel"
   }
 },

14b

run worker window: 2:15.983 (m:ss.mmm)
run worker contextMenu: 2:17.554 (m:ss.mmm)
run worker autoUpdater: 3:02.960 (m:ss.mmm)
run worker menu: 4:06.753 (m:ss.mmm)
run worker openWindowWarn: 4:14.074 (m:ss.mmm)
run worker createPreloadFileWarn: 2:04.443 (m:ss.mmm)
run worker renderer: 2:21.099 (m:ss.mmm)
翻译完成,结果是否存在遗漏项: { success: true }
翻译完成,结果已写入: output_deepseek-r1:14b.json
run main: 4:38.673 (m:ss.mmm)


------------------------

run worker autoUpdater: 1:34.068 (m:ss.mmm)
run worker openWindowWarn: 1:57.715 (m:ss.mmm)
run worker window: 2:09.907 (m:ss.mmm)
run worker contextMenu: 2:14.214 (m:ss.mmm)
run worker renderer: 1:38.631 (m:ss.mmm)
run worker createPreloadFileWarn: 2:24.484 (m:ss.mmm)
run worker menu: 4:16.409 (m:ss.mmm)
翻译出错: menu
run worker menu: 2:00.482 (m:ss.mmm)
翻译完成,结果是否存在遗漏项: { success: true }
翻译完成,结果已写入: output_deepseek-r1:14b.json
run main: 6:16.900 (m:ss.mmm)

翻译结果


"window": {
    "willUnload": {
      "title": "Confirm to refresh the current page?",
      "message": "The system may not save your changes.",
      "unload_bt": "Reload",
      "cancel_bt": "Cancel"
    }
  },

4.整体体验下来,14b 模型在翻译工作上比 7b 模型更为准确,一次性翻译成功率高。7B 模型翻译结果噪声多,返回结果可序列化效果差。翻译结果远远不如 14b。

结论

14b 在 macos 执行效率能满足特定业务场景要求

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

内容概要:本文档为《DeepSeek本地部署及使用详细指南》,详细介绍如何在本地设备上顺利部署并利用Cherry-Studio界面使用热门的DeepSeek R1模型的方法,同时也讲解了搭建本地知识库的步骤。首先介绍安装工具Ollama,它能简化大语言模型DeepSeek本地环境下的安装与管理,降低硬件需求门槛,提高用户体验,通过简单几步就可验证是否安装成功。然后是DeepSeek-R1模型的选择和安装过程,基于不同内存容量可以选择相应大小参数的预训练模型以适应不同的机器性能,安装后的验证也很简单。最后介绍了如何通过Cherry-Studio图形界面上实现对DeepSeek R1的便捷交互以及建立专属的知识库系统,让使用更加人性化高效。 适合人群:对于有兴趣尝试将大语言模型用于自身业务但担心云服务成本过高的企业,或是想初步接触大型语言模型技术的研究者和爱好者来说十分合适,同样适用于那些希望脱离复杂的技术细节而快速启动项目的用户。 使用场景及目标:提供一种离线环境下对文本数据进行智能化处理的能力,在不需要互联网连接的情况下,依然可以获得强大的自然语言处理效果,包括但不限于问答系统构建、智能客服设置等多种应用场景。并且针对不同需求提供了多样化的解决方案——从简单快捷地体验模型基本特性到深度定制化的应用扩展都涵盖其中。 其他说明:本教程提供的步骤均经过实际测试验证,确保每一步都有详细的指示,以便即使是没有相关背景的人也能顺利完成部署任务。同时强调了硬件最低配置要求,这有助于潜在用户提前评估自身条件,避免因设备限制导致无法正常运行。此外提醒大家注意的是,所有涉及到的网络链接和软件均为官方来源,请放心点击与下载。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值