垂直涡度方程推导

为避免遗忘以及巩固之前学过的内容,所以想要写篇文章记录一下之前学过的大气涡度方程推导。


关于推导垂直涡度方程之前要知道两个前提,一个是x方向上的流体运动方程;一个是y方向上的流体运动方程。

这两个方程取自流体力学中气体定常流动中的连续性方程。

这里顺便说一下这两个公式是怎么推导出来的。举一个例子,如下图有一个通道,流体从左往右流动。设左边为流进的流体面A1,右边为流出的流体面A2。

- \int_{A1}^{} \rho VndA=\int_{A2}^{}\rho VndA

\Rightarrow \rho 1V1A1=\rho 2V2A2

\Rightarrow \rho 1=\rho 2

\Rightarrow V1A1=V2A2

根据动量定理建立微分方程(欧拉运动)

\frac{d}{dt}(mv)=F

\frac{d}{dt} (\rho V v)=F

\rho f x \Delta x \Delta y \Delta z +(p-\frac{\delta p}{\delta x})\frac{\delta x}{2}\delta y \delta z - (p+\frac{\delta p}{\delta x}\frac{\delta x}{2})\delta y \delta z=F

\rho fx\Delta x \Delta y \Delta z-\frac{\delta p}{\delta x}{\Delta x}\Delta y\Delta z= F

代入上面

\frac{d}{dt}(\rho Vv)= F

从而

\frac{d}{dt}(\rho Vv)=\rho fx\Delta x \Delta y \Delta z-\frac{\delta p}{\delta x}{\Delta x}\Delta y\Delta z

\frac{d}{dt}(\rho v)=\rho fx-\frac{\delta p}{\delta x}

将该方程展开即可得下面x方向上的运动方程。y方向上的运动方程可依同理求得。

\large{\frac{\delta u}{\delta t}+u\frac{\delta u}{\delta y}+v\frac{\delta u}{\delta y}+w\frac{\delta u}{\delta z}-fv=-\frac{1}{\rho }\frac{\delta P}{\delta x}+Fx }                                               (1)

\large{\frac{\delta V}{\delta t}+u\frac{\delta V}{\delta y}+v\frac{\delta V}{\delta y}+w\frac{\delta V}{\delta z}-fv=-\frac{1}{\rho }\frac{\delta P}{\delta x}+Fy}                                             (2)

由(1)x方向的流体方程对y求偏导,左边可得:

\large{\frac{\delta u}{\delta t}+u\frac{\delta u}{\delta x}+v\frac{\delta u}{\delta y}+w\frac{\delta u}{\delta z}-fv\Rightarrow\frac{\delta^{2} u}{\delta t\delta y}+\frac{\delta u}{\delta x}\frac{\delta u}{\delta y}+u\frac{\delta^{2} u}{\delta x\delta y}+\frac{\delta v}{\delta y} \frac{\delta u}{\delta y}+v\frac{\delta^{2} u}{\delta y^{2}}+\frac{\delta w}{\delta y}\frac{\delta u}{\delta z}+w\frac{\delta^{2}u}{\delta z\delta y}-\frac{\delta f}{\delta y}v-f\frac{\delta v}{\delta y}}

右边可得:

-\frac{1}{\rho }\frac{\delta P}{\delta x}+Fx \Rightarrow -\frac{\delta(\frac{1}{\rho })}{\delta y}\frac{\delta p}{\delta x}-\frac{1}{\rho }\frac{\delta^{2}}{\delta x \delta y}+\frac{\delta Fx}{\delta y}\Rightarrow\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta y}\frac{\delta p}{\delta x}-\frac{1}{\rho }\frac{\delta^{2}}{\delta x \delta y}+\frac{\delta Fx}{\delta y}

从而可得(3)式:

\frac{\delta^{2} u}{\delta t\delta y}+\frac{\delta u}{\delta x}\frac{\delta u}{\delta y}+u\frac{\delta^{2} u}{\delta x\delta y}+\frac{\delta v}{\delta t} \frac{\delta u}{\delta y}+v\frac{\delta^{2} u}{\delta y^{2}}+\frac{\delta w}{\delta y}\frac{\delta u}{\delta z}+w\frac{\delta^{2}u}{\delta z\delta y}-\frac{\delta f}{\delta y}v-f\frac{\delta v}{\delta y}=\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta y}\frac{\delta p}{\delta x}-\frac{1}{\rho }\frac{\delta^{2}}{\delta x \delta y}+\frac{\delta Fx}{\delta y}

由(2)y方向的流体方程对x求偏导,左边可得:

\large{\frac{\delta V}{\delta t}+u\frac{\delta V}{\delta x}+v\frac{\delta V}{\delta y}+w\frac{\delta V}{\delta z}-fv\Rightarrow\frac{\delta^{2} V}{\delta t\delta x}+\frac{\delta u}{\delta x}\frac{\delta V}{\delta x}+u\frac{\delta^{2} V}{\delta x^{2}}+\frac{\delta V}{\delta x} \frac{\delta V}{\delta y}+v\frac{\delta^{2} V}{\delta y\delta x}+\frac{\delta w}{\delta x}\frac{\delta V}{\delta z}+w\frac{\delta^{2}V}{\delta z\delta x}-\frac{\delta f}{\delta x}v-f\frac{\delta v}{\delta x}}

右边可得:

-\frac{1}{\rho}\frac{\delta P}{\delta y}+Fy \Rightarrow -\frac{\delta(\frac{1}{\rho })}{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho }\frac{\delta^{2}}{\delta y \delta x}+\frac{\delta Fy}{\delta x}\Rightarrow\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho }\frac{\delta^{2}}{\delta y\delta x}+\frac{\delta Fy}{\delta x}

可得(4):

\large{\frac{\delta^{2} V}{\delta t\delta x}+\frac{\delta u}{\delta x}\frac{\delta V}{\delta x}+u\frac{\delta^{2} V}{\delta x^{2}}+\frac{\delta V}{\delta x} \frac{\delta V}{\delta y}+v\frac{\delta^{2} V}{\delta y\delta x}+\frac{\delta w}{\delta x}\frac{\delta V}{\delta z}+w\frac{\delta^{2}V}{\delta z\delta x}+\frac{\delta f}{\delta x}v+f\frac{\delta v}{\delta x}=\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho }\frac{\delta^{2}}{\delta y \delta x}+\frac{\delta Fy}{\delta x}}

用(4)-(3),左边:

\large{\color{red}{\frac{\delta^{2} V}{\delta t\delta x}+\frac{\delta u}{\delta x}\frac{\delta V}{\delta x}+u\frac{\delta^{2} V}{\delta x^{2}}+\frac{\delta V}{\delta x} \frac{\delta V}{\delta y}+v\frac{\delta^{2} V}{\delta y\delta x}+\frac{\delta w}{\delta x}\frac{\delta V}{\delta z}+w\frac{\delta^{2}V}{\delta z\delta x}-\frac{\delta f}{\delta x}v-f\frac{\delta v}{\delta x}}-\color{green}{(\frac{\delta^{2} u}{\delta t\delta y}+\frac{\delta u}{\delta x}\frac{\delta u}{\delta y}+u\frac{\delta^{2} u}{\delta x\delta y}+\frac{\delta v}{\delta t} \frac{\delta u}{\delta y}+v\frac{\delta^{2} u}{\delta y^{2}}+\frac{\delta w}{\delta y}\frac{\delta u}{\delta z}+w\frac{\delta^{2}u}{\delta z\delta y}-\frac{\delta f}{\delta y}v-f\frac{\delta v}{\delta y})}}

从而可得

\large{(\frac{\delta^{2} V}{\delta t\delta x}-\frac{\delta^{2} u}{\delta t\delta y})+(\frac{\delta u}{\delta x}\frac{\delta V}{\delta x}-\frac{\delta u}{\delta x}\frac{\delta u}{\delta y})+(u\frac{\delta^{2} V}{\delta x^{2}}-u\frac{\delta^{2} u}{\delta x\delta y})+(\frac{\delta V}{\delta x} \frac{\delta V}{\delta y}-\frac{\delta v}{\delta t} \frac{\delta u}{\delta y})+(v\frac{\delta^{2} V}{\delta y\delta x}-v\frac{\delta^{2} u}{\delta y^{2}})+(\frac{\delta w}{\delta x}\frac{\delta V}{\delta z}-\frac{\delta w}{\delta y}\frac{\delta u}{\delta z})+(w\frac{\delta^{2}V}{\delta z\delta x}-w\frac{\delta^{2}u}{\delta z\delta y})+\frac{\delta f}{\delta x}v+f\frac{\delta v}{\delta x}+\frac{\delta f}{\delta y}v+f\frac{\delta v}{\delta y}}

\Rightarrow

\large{\color{red}{\frac{\delta}{\delta t}}(\frac{\delta^{} V}{\delta x}-\frac{\delta^{} u}{\delta y})+\color{red}{\frac{\delta u }{\delta x}}(\frac{\delta V}{\delta x}-\frac{\delta u}{\delta y})+\color{red}{u\frac{\delta}{\delta x}}(\frac{\delta^{} V}{\delta x}-\frac{\delta^{} u}{\delta y})+\color{red}{​{ V}}(\frac{\delta V}{\delta x}-\frac{\delta u}{\delta y})\color{red}{\frac{\delta }{\delta y}}+\color{red}{v\frac{\delta}{\delta y} }(\frac{\delta^{} V}{\delta x}-\frac{\delta^{} u}{\delta y})+\color{red}{\delta w}(\frac{\delta V}{\delta x}-\frac{\delta u}{\delta y})\color{red}{\frac{1}{\delta z}}+\color{red}{w\frac{\delta}{\delta z}}(\frac{\delta^{}V}{\delta x}-\frac{\delta^{}u}{\delta y})+\frac{\delta f}{\delta x}v+f\frac{\delta v}{\delta x}+\frac{\delta f}{\delta y}v+f\frac{\delta v}{\delta y}}

右边:

\large{\color{red}{\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho }\frac{\delta^{2}}{\delta y \delta x}+\frac{\delta Fy}{\delta x}}-\color{green}{\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta y}\frac{\delta p}{\delta x}-\frac{1}{\rho }\frac{\delta^{2}}{\delta x \delta y}+\frac{\delta Fx}{\delta y}}}

\Rightarrow

\large{\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta y}\frac{\delta p}{\delta x}-\frac{1}{\rho }\frac{\delta^{2}}{\delta x \delta y}-\frac{1}{\rho }\frac{\delta^{2}}{\delta y \delta x}+\frac{\delta Fy}{\delta x}+\frac{\delta Fx}{\delta y}}

\zeta=\frac{\delta V}{\delta x}-\frac{\delta u}{\delta y}

左边:\large{\color{red}{\frac{\delta}{\delta t}}(\zeta)+\color{red}{\frac{\delta u }{\delta x}}(\zeta)+\color{red}{u\frac{\delta}{\delta x}}(\zeta)+\color{red}{​{\frac{\delta V}{\delta y}}}(\zeta)+\color{red}{v\frac{\delta}{\delta y} }(\zeta)+\color{red}{\frac{\delta w}{\delta z}}(\zeta)+\color{red}{w\frac{\delta}{\delta z}}(\zeta)+\frac{\delta f}{\delta x}v+f\frac{\delta v}{\delta x}+\frac{\delta f}{\delta y}v+f\frac{\delta v}{\delta y}}

右边:

\large{\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta y}\frac{\delta p}{\delta x}+\frac{\delta Fy}{\delta x}+\frac{\delta Fx}{\delta y}}

进而:

\large{\color{red}{\frac{\delta}{\delta t}}(\zeta)+(\vec{V}.\bigtriangledown )\zeta+\color{red}{\frac{\delta u }{\delta x}}(\zeta)+\color{red}{​{\frac{\delta V}{\delta y}}}(\zeta)+\color{red}{\frac{\delta w}{\delta z}}(\zeta)+\frac{\delta f}{\delta x}v+f\frac{\delta v}{\delta x}+\frac{\delta f}{\delta y}v+f\frac{\delta v}{\delta y}=\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta x}\frac{\delta p}{\delta y}-\frac{1}{\rho ^{2}}\frac{\delta \rho }{\delta y}\frac{\delta p}{\delta x}+\frac{\delta Fy}{\delta x}+\frac{\delta Fx}{\delta y}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值