关于普莱斯定律的简单总结与梳理

洛特卡定律的简单梳理和总结-CSDN博客

受到洛特卡定律的启发,普赖斯提出了核心生产者分布的“平方根定律”,也就是在某一个特定的学科领域中,全部论文的半数是由这个领域中全部作者的平方根的那些人所撰写的。

“那些人”无疑是核心或高产作者。

\sum_{m+1}^{I}n(x)=\sqrt{N}  (1)

n(x)是撰写x篇论文的作者数。

I=n(max)为这个学科规定时期内最高产的作者数。

N为该学科领域全部作者总数。

m为可以由下面公式确定:

\sum_{1}^{m}x.n(x)=\sum_{m+1}^{I}x.n(x)  (2)

这个公式表达的意思是在一定范围内,假设作者总数有I,那么其中撰写了1篇到m篇的相应作者数所著的所有论文数=撰写了m+1篇到I篇(最高的)的相应作者数所著的所有论文数。

如果规定发表了n篇论文的作者人数为a(n),则发表了n-N<n'论文的作者人数为:

A(n-n')=a(n)+a(n+1)+...+a(n')=\sum_{i=n}^{n'}a(i)  (3)

a(n)作者一共发表的论文为P(n)=n.a(n).

同理发表了n\leqslant N\leqslant n'篇论文的作者总共发表的论文数:

P(n)=P(n-n')=na(n)+(n+1)a(n+1)+,,,n'a(n')=\sum_{i=n}^{n'}P(i)  (4)

如果\frac{1}{2}.P(1\rightarrow n_{max})=P(m\rightarrow n_{max})=P(1\rightarrow m),则有:

A(1-n_{max})^\frac{1}{2}=A(m-n_{max})  (5)

这段公式表达的意思是如果一定范围内只发表过一/两/....../最多篇论文的著者的著作数总量合计的一半=一定范围内只发表过一 \rightarrow (一与最大值之间的某个数,使得结果相等)m篇论文的著者的著作书数量=一定范围内只发过m(某个值,最终使得结果相等) \rightarrow(最大值)n篇论文的著者的著作数量。\mathbf{\large{\Rightarrow}}(约去每个人的发表篇数就能得到具体多少人)\Rightarrow总的所有不同论文著作的作者数合计的开根=一到著作数最多人之间的某个数减去著作数最多的人(数量最少)。

洛特卡定律可以知道,a(n)=c/n^2,其中a(n)是频数。(也就是写x篇论文的频率)

洛特卡定律的简单梳理和总结-CSDN博客

则有P(1\rightarrow n)=\sum_{i=1}^{n}i.\frac{c}{i^{2}}=\sum_{i=1}^{n}\frac{c}{i}=c\sum_{i=1}^{n}\frac{1}{i}

注意这里面的例子a,c,b用调和平均数计算要变成倒数才行。

调和级数和公式可得:

P(1\rightarrow n)=c(lnn+0.577+...+\varepsilon n)

整理后可以得到:

ln \frac{(n_{max})^{\frac{1}{2}}}{m}=0.289+...+\frac{1}{2}\varepsilon m+\frac{1}{2}\varepsilon n_{max}

由于m一般不会太小,所以假定\varepsilon m\leqslant 0.289是合理的,而且一定存在\frac{1}{2}\varepsilon n_{max}\leqslant \varepsilon m

上式可化简为:

m=0.749((n_{max})^{\frac{1}{2}})  (6)

写作0.749((n_{max})^{\frac{1}{2}})篇以上论文的作者所发表的论文数等于论文总数的一般。或者,高产作者中一位最低产的作者发表的论文数量,等于最高产足总和所发表论文数的平方根的0.749倍。

从而可得:

A(1\rightarrow n_{max})=\sum_{i=1}^{n_{max}}a(i)=\sum_{i=1}^{n_{max}} \frac{c}{i^{2}}

=c[\frac{\pi^{2}}{6}-\frac{1}{n_{max}}+0(\frac{1}{n^{2}_{max}})]  (7)

A(m\rightarrow n_{max})=\sum_{i=m}^{n_{max}}.\frac{c}{i^{2}}

=c[\frac{1}{m}-\frac{1}{n}+0(\frac{1}{n^{2}})+0(\frac{1}{n^{2}_{max}})]  (8)

A(m\rightarrow n_{max})=c[\frac{1}{0.749(n_{max})^{\frac{1}{2}}}-(\frac{1}{n_{max}})+0(\frac{1}{n^{2}_{max}})]

同理设n_{max}\gg (n_{max})^{\frac{1}{2}}

n_{max}\gg \frac{6}{\pi^{2}}也是合理的。

于是有:

k=\frac{A(m\rightarrow n_{max})}{A(1\rightarrow n_{max})}=\frac{\frac{6}{\pi^{2}}}{0.749(n_{max})^{\frac{1}{2}}}=\frac{0.812}{({n_{max})^{\frac{1}{2}}}}  (9)

该式表达的是高产作者人数与全体足总和人数之间的比例关系(这其实就是普赖斯定律的最后表达式)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值