论文速读|HOW TO SYNTHESIZE TEXT DATA WITHOUT MODEL COLLAPSE?
论文信息:
简介:
本文讨论了在人工智能(AI)模型训练中,合成数据(synthetic data)的使用可能导致模型崩溃(model collapse)的问题。随着生成性AI技术的发展,合成数据在网络数据生态系统中变得越来越普遍,未来的GPT-n模型训练将不可避免地涉及到合成数据和人类产生数据的混合使用。模型崩溃是指在迭代训练中,学习到的生成模型的输出数据污染了后续代的训练集,导致模型性能逐渐下降。本文的背景强调了合成数据对语言模型训练的影响,以及如何合成数据而不导致模型崩溃的重要性。
本文的动机在于提高AI模型在处理合成数据时的鲁棒性和性能。随着合成数据在模型