NLP论文速读|如何在没有模型崩溃的情况下合成文本数据?

论文速读|HOW TO SYNTHESIZE TEXT DATA WITHOUT MODEL COLLAPSE?

论文信息:

简介:

       本文讨论了在人工智能(AI)模型训练中,合成数据(synthetic data)的使用可能导致模型崩溃(model collapse)的问题。随着生成性AI技术的发展,合成数据在网络数据生态系统中变得越来越普遍,未来的GPT-n模型训练将不可避免地涉及到合成数据和人类产生数据的混合使用。模型崩溃是指在迭代训练中,学习到的生成模型的输出数据污染了后续代的训练集,导致模型性能逐渐下降。本文的背景强调了合成数据对语言模型训练的影响,以及如何合成数据而不导致模型崩溃的重要性。

      本文的动机在于提高AI模型在处理合成数据时的鲁棒性和性能。随着合成数据在模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值