层次遍历二叉树求二叉树高度

 

 

int Btdepth(BiTree){
If(!T){
return 0;
}
    int front = -1 , rear = -1;
    int last=1 , level=0;
    BiTree Q[Maxsize];
    Q[++rear]=T;
    BiTree p;
    While(front<rear)
    {
        p=Q[++front];
        If(p->lchild){
            Q[++rear]=p->lchild;
        }
        If(p->rchild) {
        Q[++rear]=p->rchild;
        }
        If(front == last){
        level++;
        last=rear;
        }
    }
    return level;
}
// 定义一个函数Btdepth,参数为指向BiTree(二叉树节点)类型的指针,返回值类型为整型。
int Btdepth(BiTree T) {
    // 当输入的二叉树节点为空时(!T表示T为NULL),返回0,意味着树的深度为0。
    if (!T) {
        return 0;
    }

    // 初始化两个变量作为队列的前端和后端索引,以及初始化最后访问节点的位置last和当前层次level。
    int front = -1, rear = -1;
    int last = 1, level = 0;

    // 创建一个大小为Maxsize的数组来模拟队列,用于存储待遍历的二叉树节点。
    BiTree Q[Maxsize];

    // 将根节点放入队列中。
    Q[++rear] = T;

    // 定义一个临时节点指针p,用于遍历队列中的节点。
    BiTree p;

    // 当队列的前端小于后端时,表示队列中有节点等待处理。
    while (front < rear) {
        // 取出队列前端的节点进行处理,并将队列前沿向前移动。
        p = Q[++front];

        // 检查当前节点的左子节点,如有,则将其加入到队列的后端。
        if (p->lchild) {
            Q[++rear] = p->lchild;
        }

        // 检查当前节点的右子节点,如有,同样将其加入到队列的后端。
        if (p->rchild) {
            Q[++rear] = p->rchild;
        }

        // 当处理完一层的所有节点时(即front等于上次处理层的最后一个节点的位置last),层次增加,并更新last。
        if (front == last) {
            level++;
            last = rear;
        }
    }

    // 遍历结束后返回最大层次,即二叉树的深度。
    return level;
}

用C语言编写的,用于计算二叉树的最大深度。

这个代码片段是基于特定的二叉树结构实现的(假设每个节点有两个指针分别指向其左孩子和右孩子)。在实际应用中,需要确保BiTree类型定义正确,通常是一个包含数据和左右子树指针的结构体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值