若采用邻接矩阵有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论是( ) 。
A:满二叉树中
B:存在,且唯一
D:存在,可能不唯一
D:无法确定是否存在
有向无环图
有向无环图(Directed acyclic graph, DAG),字面意思,就是一个没有环的有向图。
比如下图就是一个 DAG:
而下图就不是一个 DAG,因为它存在环 1 − 3 − 5 − 1 :
发现,只有父亲指向儿子的边的树是一个 DAG。
DAG 作为特殊的有向图,在各方面都有很重要的作用。
比如,凡是可以进行 dp(动态规划)的数据,其承接关系一定是一个 DAG。DAG 有一个非常重要的性质:一个 DAG 中,必然存在至少一个顶点的入度为 0,至少一个顶点的出度为 0。
下面的拓扑排序便利用了这个性质。
拓扑排序
拓扑排序(topological-sort, toposort, topsort),是对一个 DAG G,将G中所有所有顶点排成一个线性序列,使得图中任意一对顶点 u , v ,若边 u → v ∈ E ( G ) ,则 u 在线性序列中出现在 v之前。所以说,它不是对数据的一种排序算法。
下面我们需要一个队列q。
我们首先找到所有入度为0 的节点,依次加入q。比如上述例子中此时 q = { 2 } 。
然后进行循环的操作:
- 取出队首节点x,将所有以它为起点的边删去,也就是对于所有存在的边 x → i ,进行 din[i]--;
- 对于每个进行 din[i]-- 的 i,看它操作之后的 din i 是否为 0,是则加入队列,然后重复上面的操作。
可以看出来,操作其实就是对每一条有向边 u → v u\rightarrow vu→v,保证 u uu 在前 v vv 在后即可。
最后我们排序出来的一种可能的方案:#include<bits/stdc++.h> using namespace std; vector<int>g[105]; queue<int>q; int n,din[105]; void toposort() { for(int i=1;i<=n;i++) { if(din[i]) continue; q.push(i); } while(!q.empty()) { int x=q.front(); q.pop(); cout<<x<<' '; for(auto i:g[x]) { if(!--din[i]) q.push(i); } } } int main() { cin>>n; for(int i=1;i<=n;i++) { int x; cin>>x; while(x) { din[x]++; g[i].push_back(x); cin>>x; } } toposort(); return 0; }
邻接矩阵
1.有向图和无向图的邻接矩阵
由于无向图和无向图的边都是没有权值的,所以我们用1表示某两顶点之间有边存在,用0表示这两边是没有边存在的。
首先,G2,有4个顶点,所以用一个(n*n)即5*5的数组来存这个图,也就是说,我们要建一个这么大的邻接矩阵;
行分别表示v1 v2 v3 v4;
列也是v1 v2 v3 v4;
我们需要了解的一点就是!v(i,j)表示vi到vj之间是否有边;
- 先看v1这个顶点,他和v2 v4相连; 看第一行(也就是v1这一行),找到v2和v4下面都写上1;
- 再看v2这个顶点,他和v1 v3 v5相连; 看第二行(也就是v2这一行),找到v1和v3、v5下面都写上1;
- 再看v3这个顶点,他和v2 v4 v5相连; 我们看第三行(也就是v3这一行),找到v2和v4、v5下面都写上1;
- 看v4这个顶点,他和v1 v3相连; 看第四行(也就是v4这一行),找到v1和v3下面都写上1;
- 看v5这个顶点,他和v2 v3相连; 看第五行(也就是v5这一行),找到v2和v3下面都写上1;
- 其他没有边的写为0;
G1是一个有向图,也就是同理,只不过有向图他两点之间是用箭头链接,这样我们只要看,谁指向谁,就说明这两个之间是联通的。
v<i,j>就表示i到j之间是否为通的。
这里的G1,4个顶点
#include<iostraem>
#include<malloc>
#include<string>
#include<cstring>
#define MVNum 100;
typedef VerTexType char;
using namespace std;
//邻接矩阵(数组/顺序存储)
typedef struct {
VerTexType vexs[MVNum];//顶点表
Arctype arcs[MVNum][MVNum];//邻接表,,记得初始化为0奥,我这里没有写了
int vexnum,arcnum;//分别表示顶点数和边的数量
}AMGraph;
int Locate(AmGraph G,VerTexType u){
for(int i=0;i<G.vexnum;i++)
{
if(G.vexs[i]==u)
return i;
}
return -1;
}
Status CreateUDN(AMGraph &G){
cin>>G.vexnum>>G.arcnum;
for(int i=0;i<G.vexnum;i++)
cin>>G.vexs[i];
for(int i=0;i<G.arcnum;i++)
for(int j=0;j<G.arcnum;j++)
{
G.arcs[i][j]=INT_MAX;
}
VerTexType v1,v2;
int i,j,w;
for(int k=0;k<G.arcnum;k++)
{
cin>>v1>>v2;
i=Locate(G,v1);
j=Locate(G,v2);
G.arcs[i][j]=1;
G.arcs[i][j]=G.arcs[j][i];
}
return 1;
}
2.网的邻接矩阵
接下来是网的邻接矩阵了,这里注意就是,链接两点的边如果有权值我们就把他叫做网,这时候,邻接矩阵中对应得v[i][j]就不是表示存不存在边了,而是写他这一条边的权值:
方法同上,只不过这里把没有边改成了无穷大;方便我们做后面的算法;
#include<iostraem>
#include<malloc>
#include<string>
#include<cstring>
#define MVNum 100;
typedef VerTexType char;
using namespace std;
//邻接矩阵(数组/顺序存储)
typedef struct {
VerTexType vexs[MVNum];//顶点表
Arctype arcs[MVNum][MVNum];//邻接表
int vexnum,arcnum;//分别表示顶点数和边的数量
}AMGraph;
int Locate(AmGraph G,VerTexType u){
for(int i=0;i<G.vexnum;i++)
{
if(G.vexs[i]==u)
return i;
}
return -1;
}
Status CreateUDN(AMGraph &G){
cin>>G.vexnum>>G.arcnum;
for(int i=0;i<G.vexnum;i++)
cin>>G.vexs[i];
for(int i=0;i<G.arcnum;i++)
for(int j=0;j<G.arcnum;j++)
{
G.arcs[i][j]=INT_MAX;
}
VerTexType v1,v2;
int i,j,w;
for(int k=0;k<G.arcnum;k++)
{
cin>>v1>>v2>>w;
i=Locate(G,v1);
j=Locate(G,v2);
G.arcs[i][j]=w;
G.arcs[i][j]=G.arcs[j][i];
}
return 1;
}
邻接矩阵的优缺点
优点:①直观,简单,好理解
②方便查找某两边之间是否存在边
③方便寻找某一顶点直接相邻的点
④方便计算各个顶点的入度和出度
缺点:①不利于增加和删除顶点
②浪费空间--特别在稀疏图中
③浪费时间--比如统计图中边的数目