20.设某有向图中有n个顶点,则该有向图对应的邻接表中有()个表头结点
A: n-1
B: n
C: n+1
D:2n-1
解析:对于无向图和有向图的邻接表来说,顶点的数量与表头结点的数量是相同的。因为邻接表中的每个表头结点对应着一个顶点,而且每个顶点都至少对应一个表头结点。如果一个顶点的度数为0,那么该顶点的邻接表对应的表头结点为空,但是这种情况并不会影响表头结点的数量与顶点的数量相等。因此,无论是无向图还是有向图,邻接表中表头结点的数量都等于顶点的数量。
图
定义:图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)“,而点与点之间的连线则被成为"边或弧”(edege)。
通常记为,G=(V,E)。图是一种重要的数据结构,基本概念包括:顶点,边,有向,无向,权,路径回路,连通域,邻接点,度,入边,出边,入度,出度等。
图的分类
根据边是否有方向,将图可以划分为:无向图和有向图。
无向图
即两个顶点之间没有明确的指向关系,只有一条边相连,例如,A顶点和B顶点之间可以表示为 <A, B> 也可以表示为<B, A>,如下所示
上面的图G0是无向图,无向图的所有的边都是不区分方向的。
我们用 **图 = (顶点集合,{边集合})**来表示图。
G0=(V1,{E1}) 其中,
(01) V1={A,B,C,D,E,F}。 V1表示由"A,B,C,D,E,F"几个顶点组成的集合。
(02) E1={(A,B),(A,C),(B,C),(B,E),(B,F),(C,F), (C,D),(E,F),(C,E)}。 E1是由边(A,B),边(A,C)…等等组成的集合。其中,(A,C)表示由顶点A和顶点C连接成的边。
有向图
顶点之间是有方向性的,例如A和B顶点之间,A指向了B,B也指向了A,两者是不同的,如果给边赋予权重,那么这种异同便更加显著了
上面的图G2是有向图。
和无向图不同,有向图的所有的边都是有方向的!
一条边上的两个顶点叫做邻接点。
例如,上面无向图G0中的顶点A和顶点C就是邻接点。
邻接点和度
邻接点
在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。
顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。
度
在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。
例如,上面无向图G0中顶点A的度是2。在有向图中,度还有"入度"和"出度"之分。
某个顶点的入度,是指以该顶点为终点的边的数目。
而顶点的出度,则是指以该顶点为起点的边的数目。顶点的度=入度+出度。例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。
路径和回路
路径:如果顶点(Vm)到顶点(Vn)之间存在一个顶点序列。则表示Vm到Vn是一条路径。
路径长度:路径中"边的数量"。
简单路径:若一条路径上顶点不重复出现,则是简单路径。回路:若路径的第一个顶点和最后一个顶点相同,则是回路。
简单回路:第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。
图的存储结构
图的存储结构,常用的是"邻接矩阵"和"邻接表"。
邻接矩阵
邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。假设图中顶点数为n,则邻接矩阵定义为:
图中的G1是无向图和它对应的邻接矩阵
图中的G2是有向图和它对应的邻接矩阵。
通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。
邻接矩阵的缺点就是比较耗费空间。
邻接表
邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。
图中的G1是无向图和它对应的邻接矩阵
图中的G2是无向图和它对应的邻接矩阵。