精打细算用好 LLMs :LLM 落地应用成本及响应延迟优化

高成本和延迟是将大语言模型应用于生产环境中的主要障碍之一,二者均与提示词信息的体量(prompt size)紧密相连。

鉴于大语言模型(LLM)展现出极强的广泛适用性,不少人视其为解决各类问题的灵丹妙药。通过与诸如检索增强生成技术(RAG)及 API 调用等在内的工具整合,并配以精细的指导性提示词,LLM 时常能展现出逼近人类水平的工作能力。

然而,这种无所不包的应用策略,其潜在隐患在于可能会导致提示词的信息量迅速膨胀,直接引发高昂的使用成本以及较大的响应延迟,令 LLMs 在生产环境的实际部署面临重重困难。

针对高价值任务(如代码优化任务)使用 LLMs 时,成本这方面的考量或许会退居其次 —— 一段平常半小时才能编写完成的代码现在等待半分钟即完成,花费一定的成本尚可接受。但转至 To C 领域,面对成千上万次的即时对话需求,成本控制与响应速度便成为决定项目成败的关键。

本文将分享为 Resider.pl 构建由 LLM 支持的房地产搜索助手 “Mieszko” 这一过程的心得。本文的重点是:如何跨越从吸引眼球的概念验证(impressive POC)在实操中有效运用 LLMs 的鸿沟。

01 Prompt is all you have

在构建 “Mieszko” 时,我非常倚重 LangChain 这一个出色的框架。该框架以一种有序且清晰的方式,将复杂的逻辑或组件抽象化,并配备了高效易用的提示词模板,仅需寥寥数行代码即可实现调用。

LangChain 的易用性或许会让我们不经意间忘却一个核心要点:不论我们的解决方案有多么繁琐,实质上所有组件都会汇总成一条长长的文本信息——“指令性提示词”——传递给LLM。接下来将要展示的内容是一个概括性的示例说明,用于展示 LLM Agent 在接收指令性提示词或执行任务前,其输入提示词的基本结构和主要组成部分。

使用 LLM Agent 中的指令性提示词模板时所采用的基本结构

02 是什么影响了使用成本和响应延迟?

LLMs(大语言模型)是有史以来构建的最复杂的人工智能模型之一,但其响应延迟和使用成本主要取决于输入和输出处理的 tokens 数量,而非任务本身的难度。

撰写本文时,OpenAI 旗舰模型 GPT-4 Turbo 的定价公式大致如下:

响应延迟的相关计算方法则并不那么直接,但根据 “Mieszko” 的应用场景,可简单归结为以下这个公式:

从成本角度看,input tokens 通常是 LLMs 使用成本的“大头”,其价格仅为 output tokens 的三分之一,但对于更复杂的任务,提示词长度会远超面向用户的 output tokens 长度。

然而,延迟主要受 output tokens 影响,处理 output tokens 的时间大约是 input tokens 的 200 倍。

在使用 LLM Agents 时,约 80% 的 tokens 来自 input tokens ,主要是初始的提示词和 Agents 推理过程中的消耗。这些 input tokens 是使用成本的关键组成部分,但对响应时间的影响有限。

03 监控和管理 tokens 的消耗

在构建任何 LLMs 应用程序时,除了初始提示词模板之外,至少还需要以下组件:

  • 记忆库(每次与 LLMs 的交互(每次调用)中,都需要包含之前所有的对话消息或历史上下文。)
  • 工具箱(如供 LLMs 调用的API),及其详细的指导性提示词
  • 检索增强生成(RAG)系统及其产生的上下文

从技术上讲,我们可以添加任意数量的工具,但如果依赖最简单的 Agent&Tools 架构,可能系统的扩展性就会很差。对于每一种可用的工具,都需要在每次调用 Agents 时发送诸如 API 文档之类的详细说明。

在准备新系统组件时,需要考虑每次调用增加多少个 tokens 是值得的。 如果使用的是 OpenAI 的模型,可以快速评估新工具或额外的指导性提示词的“tokens 消耗”情况,方法如下:

 import tiktoken
def num_tokens_from_string(string: str, model_name: str) -> int:
 try:
        encoding = tiktoken.encoding_for_model(model_name)
 except KeyError as e:
 raise KeyError(f"Error: No encoding available for the model '{model_name}'. Please check the model name and try again.")

    num_tokens = len(encoding.encode(string))
 return num_tokens

04 如何在保持提示词精简的同时不牺牲准确性

初次接触时,大语言模型(LLMs)可能令人感到无所适从,但归根结底,重要的是要记住我们打交道的仍是软件。这意味着我们应当事先预料到会出现错误,管理和控制软件系统设计中的抽象层次和模块化程度,并寻找更高效的解决方案来处理子任务。

4.1 将大段提示词拆分成多层然后再调用

软件工程的关键原则之一是模块化和抽象化。试图用单个提示词来处理更复杂的问题,就如同编写难以维护的“意大利面条式”代码(Spaghetti code)(译者注:这个比喻来源于意大利面(spaghetti)缠绕不清、难分难解的形象。当一段代码缺乏清晰的结构、正确的模块划分和合理的逻辑顺序,而是充斥着大量的嵌套条件语句、无序的跳转、重复的代码块时,就被视为“意大利面式代码”。)一样低效。

在构建 Mieszko 时,性能显著提升的一个关键点是将提示词拆分为两个部分:

  • 用于决策的 Agent (Decision Agent):对下一步可以采取的措施以及如何处理提示词输出的一般指导原则。
  • 用于执行任务的 Agent / 对话型 LLMs 系统:含有针对具体步骤(如房源搜索、数据比较或房地产知识查询)的详细指导性提示词。

分层决策与执行架构图

分层决策和执行调用架构图,图片由原文作者提供

这种架构使得我们能够在每次调用时,首先选取需要使用的特定任务提示词,而无需随附沉重的、消耗大量 tokens 的执行指令(execution instructions),从而平均减少了超过 60% 的 tokens 使用量。

4.2 务必监控每次调用时的最终提示词

LLM 接收到的最终提示词(final prompt)可能与最初的提示词模板相去甚远。通过工具(tools)、记忆库(memory)、上下文(context)及 Agent 的内部推理来丰富提示词模板这一过程,可能会使提示词的规模激增数千个 tokens 。

此外,LLMs 有时会展现出如洛奇·巴尔博亚(Rocky Balboa)(译者注:洛奇·巴尔博亚(Rocky Balboa),美国电影《洛奇》系列的主角,业余拳击手出身,凭借自身的努力,登上拳坛最高峰。)般的韧性,即使面对存在错误和矛盾的提示词,也能“站起来”给出合理的答案。

通过仔细审查数十次 LLMs 的调用,并深入了解大语言模型(LLM)实际上接收到了什么信息,能为关键突破(key breakthroughs)和消除漏洞(bug elimination)提供宝贵洞见。我强烈推荐使用 LangSmith 来进行深入分析。

如果想要寻求最简便的方案,也可以启用 LangChain 中的调试功能,它将为我们提供每次调用时确切发送的提示词,以及大量有用信息,帮助我们更好地监控和优化提示词内容。

import langchain
langchain.debug=True

4.3 如只需几行代码即可处理的事,向 LLMs 提交前请三思

在使用 LLMs 时,最大的误区是忘记你仍然可以利用编程来解决问题。 以我为例,一些最大的性能提升,就是通过使用 Python 函数在 LLMs 调用的上下游处理一些极为简单的任务。

在使用 LangChain 时,这一点尤为有效,我们可以轻松地将 LLMs 的调用与传统的 Python 函数进行链式处理。下面是一个简化的示例,我曾用它来解决一个难题:即便指示 LLMs 保持回答与用户发送的消息相同的语言,LLMs 仍默认回复英文。

我们无需借助 LLMs 来检测目前的对话使用的是什么语言,利用 Google Translate API 或甚至是一个简单的 Python 库(如 langdetect ),可以更快、更准确地完成这项任务。一旦我们确定了输入语言,就可以明确地将其传入指导性提示词中,从而减少在 LLMs 的调用过程中需要处理的工作量。

from langdetect import detect

prompt = """
Summarize the following message in  {language}:
Message: {input} 
"""

prompt = ChatPromptTemplate.from_template(prompt)

def detect_language(input_message):
    input_message["language"] = detect(input_message["input"])
 return input_message

detect_language_step= RunnablePassthrough.assign(input_message=detect_language)

chain_summarize_in_message_language = (
    detect_language_step
 | RunnablePassthrough.assign(
            language=lambda x: x["input_message"]["language"]
 ) 
 | prompt 
 | llm )

4.4 在设计 Agent 的提示词时要精打细算,因为它们通常至少会被调用两次

集成了工具的 Agent 能够将 LLMs 的能力提升到新的层次,但同时它们也非常消耗 tokens(计算资源)。 下面的图表展示了 LLM Agent 针对 query 提供答案的一般逻辑流程。

AI Agent 两次调用 LLM,图片由原文作者提供

如上图所示,Agent 通常至少需要调用 LLM 两次:第一次是为了规划如何使用工具,第二次则是解析这些工具的输出以便给出最终答案。这一特点意味着,我们在设计提示词时节省的每一个 token,实际上都会带来双倍的效益。

对于某些较为简单的任务,采用 Agent 的方式可能是“用牛刀杀鸡”,而直接使用带有 Completion 的简单指导性提示词(译者注:模型接收到 instruction prompt 后的内容生成过程。)可能就能够达到相似的结果,且速度甚至还能快上一倍。以 Mieszko 项目为例,我们决定将大部分任务从 Multi-Agent 架构转变为基于特定任务的 Agent+Completion 模式。

4.5 将大语言模型和传统编程工具结合使用,发挥各自的优势(Use LLMs for reasoning but calculate and aggregate with SQL or Python)

相较于早期的 GPT-3.5,最新顶尖大语言模型已经有了很大的进步,那时它们在处理基础数学公式时都还会出错。现在,在诸如计算 segment averages (译者注:在一组数据中,将数据分成若干个段或区间,然后计算每个段内数据的平均值。)任务上,LLMs 已经能够轻松处理数百个数字。

但它们更擅长编写 Python 或 SQL,无需数以万亿计的模型参数,就能以 100% 的准确率执行复杂的数学运算。然而,向 LLMs 传递大量数字会消耗大量 tokens ,在最好的情况下,每 3 位数字都会转换为一个 token ;若数值庞大,单个数字就可能占用多个 tokens 。

想要更低成本、更高效率地分析数学运算,获得运算结果,窍门在于如何运用 LLMs 理解问题及手头数据,继而将之转译为 SQL 或 Python 这类更适合进行数学分析的编程语言。

实践中,可将编写的代码嵌入一个函数内执行,此函数负责连接数据源并仅将最终分析结果呈现给 LLM,供其直接理解、分析。

05 Summary

希望本文介绍的这些通用技巧,能够帮助各位读者更好地了解 LLMs 应用中使用成本和响应延迟的主要影响因素,以及如何优化它们。我希望尽可能多地分享我在开发基于 LLM 的生产级应用中学到的关键经验教训。在本系列接下来的文章中,我将从更具体、实践性更强的实践案例着手:

  • 使用 Python guardrails (译者注:使用 Python 编写基于规则的验证函数。)提升 LLM 输出内容的可靠性
  • 通过模块化和抽象化(Modularity and Abstraction)增强 LLM Agents
  • 利用 LangSmith 了解、监控基于 LLMs 的应用(预计六月中旬发布)

最后,特别感谢 Filip Danieluk ,并向 Filip Danieluk 致以崇高的敬意,他是 Mieszko 引擎的 co-creator 。无数个昼夜的深入讨论和结对编程(pair-programming)催生了本系列文中阐述的内容,这些见解既属于我,也属于 Filip 。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值