Netflix 机器学习科学家的提示词优化经验分享

编者按: 如何充分发挥大模型的潜能,用好大模型,关键在于如何优化向它们发送的提示词(prompt),是为提示词工程(prompt engineering)。

本文Netflix 机器学习科学家Cameron R. Wolfe的提示词优化经验分享,阐述了目前提示词的主要构成要素,介绍了与提示词相关的上下文窗口相关信息,并总结了一些行之有效的优化策略,如实事求是,实证为本、先从简单着手、若无必要,尽量简单明了、使用示例等,这些策略应能为在实践中优化提示词提供参考思路。

本文将介绍一些提示词工程(prompt engineering)的基本概念,以及如何应用这些概念来提升大语言模型(LLM)的性能。

1. LLM 的界面极其简便易用

LLMs 如此受欢迎的主要原因之一是它们采用了 text-to-text 的输入输出界面(译者注:用户只需要在Web或客户端界面上输入文本提示词,模型就能根据输入的文本生成相应的文本输出。),使得使用起来非常简单直观。在之前,使用深度学习解决一项任务至少需要我们通过一些数据对模型进行微调,以教会模型如何解决这项任务。此外,大多数此类模型都是专门解决单一任务的专家模型。由于 LLMs 具有一种新出现的上下文学习(in-context learning)能力,我们可以通过文本提示词解决各种问题。以往复杂的问题解决过程现在已经被简化为通过自然语言描述解决问题!

“prompt工程作为一个相对新兴的学科领域,其目标是开发和改进优化提示词(prompt),使大模型(LMs)能基于这些提示词充分发挥潜力,高效地被用于各项应用方向和研究领域。” —— 摘自文献 [1]

2. 什么是提示词工程?

得益于大语言模型基于文本对话的简单交互界面,使用它们已不再是专业人士(数据科学家或机器学习工程师(MLE))的“私房菜”。普通大众只要掌握一定的语言能力,就可以直接与这些模型对话交互,借助它们的能力解决较为复杂的问题。不过,在使用 LLM 解决问题时,我们得到的结果很大程度上取决于提供给模型的文本提示词。由于这个原因,提示词工程(通过大量的实证试验和反复优化,指导如何为特定任务设计高质量的prompt)变得极其受欢迎和具有影响力,行业目前已经积累了诸多有效的技术手段和优秀的实践方法。

3. 提示词的主要构成要素

为大语言模型设计 prompt,有多种不同的方法。但是,大多数 prompt 设计策略通常会包含以下几个共同的组成要素:

  • 要处理的输入数据(Input Data): 大模型需要处理的输入数据,比如待翻译或分类的句子、待总结的文档等。
  • 具体的示例(Exemplars):在 prompt 中介绍输入数据和期望输出之间的对应关系,明确地指导模型产生所需的输出形式,提高任务完成的准确性,使得大模型完成预期的文本输入到模型输出的映射转换。
  • 指令型文本(Instruction):使用自然语言文字对期望的模型输出的性质、格式等进行描述和指导。
  • 结构化和格式化的元素或标签(Indicators):通过标签、格式化元素( tags、formatting elements)等方式在 prompt 中引入一些人工结构,使其不只是简单的自然语言文本,而是带有一些额外的语义信息和视觉提示,从而指导模型的输出更契合要求。
  • 上下文(Context):prompt 中提供给大模型的一些背景信息、情况说明、限制条件等内容,有助于模型更好地把握语境,理解 prompt 的全部含义,从而生成更准确、更符合预期的输出结果。

在下图中展示了一个真实的 prompt 实例,它将上述所有提示词的主要构成要素都整合到了一个句子分类任务的提示词中。

图片

4. 上下文窗口(The context window)

在预训练阶段,模型有一个固定的最大输入长度,如果输入的内容超过这个长度,模型的输出就可能失常。这个预训练时设定的序列长度限制,就决定了模型实际运行时能够一次性处理的最大文本长度,被称为上下文窗口(The context window)。如果文本序列的长度大大超过了这一预设的上下文长度,那么模型的行为就可能无法预测,并产生错误的输出。不过,有一些方法可以用来扩展模型的上下文窗口,例如 Self-Extend [2] 或位置插值法(positional interpolation)[3]。

图片

近期关于 LLMs 的最新研究强调了创建长上下文窗口(long context windows)的重要性,从而使得模型能够在每个提示词(prompt)中处理更多的信息(例如,更多的示例对(Exemplars)或更多的上下文内容)。然而,并非所有的 LLM 都能完美地利用上下文!通常通过 “大海捞针测试”(needle in the haystack test) [4] 来评估 LLM 利用长上下文窗口信息的能力,这项测试具体包括:

  1. 在上下文中嵌入一个随机 fact(译者注:独立存在、真实无误但与上下文无关的陈述性信息,可以检验模型在真实应用场景中对关键信息的识别和提取能力。)。
  2. 要求模型检索这个 fact。
  3. 反复地改变上下文长度以及 fact 在上下文中的位置,并在各种上下文配置下反复测试。

这项测试会生成如下图所示的测试结果(摘自文献 [4]),我们可以很容易地发现上下文窗口的不足之处。

图片

5. 我的提示词(prompt)工程策略

针对不同的大型语言模型,提示词工程的具体细节会有很大区别。但是,有一些通用的原则是非常有用的,可以用来指导如何设计提示词:

  • 实事求是,实证为本:提示词工程的首要步骤是建立一个可靠的评估机制(例如通过测试用例评估、人工评估或让大模型进行评估),从而轻松地评估或测量提示词工程中 prompt 的优化效果。
  • 先从简单着手:刚开始接触提示词工程时,不应当直接尝试 “chain-of-thought prompt” 这种复杂技术,而应先从最简单的形式着手,然后逐步添加复杂元素,同时根据提示词的性能变化(见上文)来判断是否有必要继续增加提示词的复杂度。
  • 追求明确具体而直接:尽可能消除 prompt 中的任何歧义,尽量使用简洁、明确、直接和具体的自然语言来描述期望大模型输出的内容。
  • 使用一些具体的示例(exemplars):如果很难具体描述期望的理想输出,可以尝试在提示词中添加一些具体的示例,通过具体实例消除歧义,明确期望输出的形式。
  • 若无必要,尽量简单明了:有些情况下确实需要使用很多复杂的 Prompt 策略(如解决多步推理问题),但我们在使用这些方法之前应三思而后行。要根据经验,通过判断实践效果和采用评估方法来确定是否必须引入复杂提示词策略。

综上所述,本文介绍的提示词工程策略主要是:i) 先加大投入构建一个非常好的评估框架;ii) 从简单的 Prompt 形式入手;iii) 根据实际需求,逐步适度引入复杂提示词策略,以便尽可能达到理想的性能水平

图片

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值