JOB3
实验内容:
1.设计算法,将顺序表L中的所有元素逆置;
void Reverse(SqList<T>& L){...}
2.设计算法,删除顺序表L中所有值为x的元素;
void Deletex1(SqList<T> & L, int x){...}
3.设计算法,删除顺序表L中从序号i开始的k个元素
bool Deletek(SqList<T>& L, int i, int k){...}
4.设计算法,合并两个按元素值递增有序的顺序表A和B中的全部元素,得到新的顺序表C
void Merge2(SqList<T> A, SqList<T> B, SqList<T>& C){...}
[该算法也可理解为:求两个用顺序表表示的集合A和B的并集C。]
选做题:如何求两集合的差集和交集呢?请你来思考。
5.设计算法,在有序顺序表L中插入元素e,使得该顺序表依然有序
提示:若顺序表满,则插入失败;否则正常执行插入操作。
bool Insert(SqList<T>& L, T e){...}
6.设计算法,将顺序表L中所有值为奇数的元素移动其他元素的前面。
void Move(SqList<T> &L){...}
Job3_SqList_2.cpp 算法应用分析
1. 包含与声明
分析:
- include "SqList.cpp":包含了我们之前分析过的 SqList 类的完整实现。
- include <iostream> 和 using namespace std;:用于算法中的 swap(在 Reverse 和 Move 中)以及 main 函数中的 cout。
对应代码:
C++
include "SqList.cpp" //引用顺序表泛型类
include <iostream>
using namespace std;
2. 算法1:Reverse (顺序表逆置)
分析:
- 目标 (JOB3-1): 将顺序表L中的所有元素原地逆置。
- 实现: 使用了双指针法。
- int i = 0, j = L.length - 1;:指针 i 指向表头,指针 j 指向表尾。
- while (i < j):当两个指针相遇或交错时,逆置完成。
- swap(L.data[i], L.data[j]);:交换 i 和 j 指向的元素。
- i++; j--;:两个指针向中间移动。
- 记忆技巧: “两头对调,向内收缩”。
对应代码:
C++
//将顺序表L中的所有元素逆置
template <typename T>
void Reverse(SqList<T>& L)
{
int i = 0, j = L.length - 1;
while (i < j)
{
swap(L.data[i], L.data[j]); //序号为i和j的两个元素交换
i++;
j--;
}
}
3. 算法2:Deletex1 (删除所有值为x的元素)
分析:
- 目标 (JOB3-2): 删除顺序表L中所有值为 x 的元素。
- 实现: 使用了快慢指针法(或称为“压缩法”)。
- int k = 0;:k 是慢指针,指向下一个“非x元素”应该存放的位置。
- for (int i = 0; i < L.length; i++):i 是快指针,负责遍历整个数组。
- if (L.data[i] != x):如果快指针 i 找到了一个不等于 x 的元素。
- L.data[k] = L.data[i]; k++;:就将其“保留”,放到慢指针 k 的位置,然后 k 后移一位。
- L.length = k;:遍历结束后,k 的值就是新数组的实际长度(所有 x 都被跳过了)。
- 记忆技巧: “快指针 i 找,慢指针 k 存”。
对应代码:
C++
//删除顺序表L中所有值为x的元素
template <typename T>
void Deletex1(SqList<T> & L, int x)
{
int k = 0;
for (int i = 0; i < L.length; i++)
if (L.data[i] != x) //将不为x的元素插入到data中
{
L.data[k] = L.data[i];
k++;
}
L.length = k; //重置L的长度为k
}
4. 算法3:Deletek (删除从i开始的k个元素)
分析:
- 目标 (JOB3-3): 删除顺序表L中从序号 i 开始的 k 个元素。
- 实现: 利用了顺序表元素前移的特性。
- if (i < 0 || k < 1 || ...):严格的参数检查,确保 i 和 k 的范围合法。
- for (int j = i + k; j < L.length; j++):j 从被删除区域的后面第一个元素 (i+k) 开始遍历。
- L.data[j - k] = L.data[j];:将 j 位置的元素向前移动 k 个位置,覆盖掉 j-k 位置的元素。
- L.length -= k;:最后,总长度减少 k。
- 记忆技巧: “跳过 k 个,后面 (j) 的搬到前面 (j-k)”。
对应代码:
C++
//删除顺序表L中从序号i开始的k个元素
template <typename T>
bool Deletek(SqList<T>& L, int i, int k) //求解算法
{
if (i < 0 || k < 1 || i + k<1 || i + k>L.length)
return false; //参数i和k错误返回false
for (int j = i + k; j < L.length; j++) //删除k个元素
L.data[j - k] = L.data[j];
L.length -= k; //长度减k
return true;
}
5. 算法4:Merge2 (合并两个有序顺序表)
分析:
- 目标 (JOB3-4): 合并两个递增有序的顺序表A和B到C。
- 实现: 类似“归并排序”的合并步骤。
- int i = 0, j = 0;:i 遍历 A,j 遍历 B。
- while (i < A.length && j < B.length):当两个表都未遍历完时。
- if (A.data[i] < B.data[j]) ... else ...:比较 A[i] 和 B[j] 的大小,将较小的那个元素用 C.Add() 添加到 C 的末尾,并移动对应的指针(i++ 或 j++)。
- while (i < A.length) 和 while (j < B.length):处理其中一个表遍历完后,另一个表剩余的元素,将它们全部 Add 到 C 中。
- 记忆技巧: “双指针 i j 比大小,小的进 C,指针走。最后处理剩(Sheng)利(Li)者。”
对应代码:
C++
//合并两个按元素值递增有序的顺序表A和B中的全部元素,得到新的顺序表C
template <typename T>
void Merge2(SqList<T> A, SqList<T> B, SqList<T>& C)
{
int i = 0, j = 0; //i用于遍历A,j用于遍历B
while (i < A.length && j < B.length) //两个表均没有遍历完毕
{
if (A.data[i] < B.data[j])
{
C.Add(A.data[i]); //归并A[i]:将较小的A[i]添加到C中
i++;
}
else //归并B[j]:将较小的B[j]添加到C中
{
C.Add(B.data[j]);
j++;
}
}
while (i < A.length) //若A没有遍历完毕
{
C.Add(A.data[i]); //归并A中剩余元素
i++;
}
while (j < B.length) //若B没有遍历完毕
{
C.Add(B.data[j]); //归并B中剩余元素
j++;
}
}
6. 算法5:Insert (有序表插入)
分析:
- 目标 (JOB3-5): 在有序顺序表L中插入元素 e,使其依然有序。
- 实现:
- if (L.length == L.capacity) return false;:检查表是否已满,满了则插入失败。
- int i = 0; while (i < L.length && L.data[i] <= e):循环查找第一个大于 e 的元素位置 i。
- for (int j = L.length; j > i; j--) ...:将从 i 位置开始的所有元素向后移动一位(这与 SqList.cpp 中的 Insert 逻辑相同)。
- L.data[i] = e;:在腾出的 i 位置放入 e。
- 记忆技巧: “先找到 i (第一个比 e 大的),再从后往前移到 i,最后 i 处放 e”。
对应代码:
C++
//
template <typename T>
bool Insert(SqList<T>& L, T e)
{
if (L.length == L.capacity) // 顺序表空间满时,插入操作被禁止
return false;
int i = 0;
while (i < L.length&& L.data[i] <= e) // 找到第一个大于e的元素的位置
i++;
for (int j = L.length; j > i; j--) // 将data[i]及后面元素后移一个位置
L.data[j] = L.data[j - 1];
L.data[i] = e; // 插入元素e
L.length++; // 长度增1
return true;
}
7. 算法6:Move (奇数移动到前面)
分析:
- 目标 (JOB3-6): 将顺序表L中所有奇数移动到其他元素(偶数)的前面。
- 实现: 类似“快速排序”的 partition 思想,但使用了 swap。
- int i = -1;:i 指向“奇数区”的最后一个元素。
- int j = 0;:j 负责遍历整个数组。
- while (j < L.length):遍历。
- if (L.data[j] % 2 == 1):如果 j 找到了一个奇数。
- i++;:将“奇数区”向后扩大一位。
- if (i != j) swap(L.data[i], L.data[j]);:关键:如果 i 和 j 不在同一位置,就将 j 找到的奇数与 i 位置的元素(必然是偶数或 j 自身)交换。
- j++;:j 继续向后遍历。
- 记忆技巧: “j 探路,i 守城(奇数区)。j 遇奇数,i 扩城,swap(i, j)”。
对应代码:
C++
template <typename T>
void Move(SqList<T> & L) {
int i = -1;
int j = 0;
while (j < L.length) {
if (L.data[j] % 2 == 1) {
i++;
if (i != j)
swap(L.data[i], L.data[j]);
}
j++;
}
}
8. main 函数 (测试流程)
分析: main 函数按顺序调用了上述所有算法,以验证它们的正确性。
- 创建 L: 使用数组 a 创建 L。
- 测试 Reverse: 调用 Reverse(L) 并显示结果。
- 测试 Deletex1: 连续两次调用 Deletex1(L, 1) 和 Deletex1(L, 2),删除所有1和2。
- 测试 Deletek: 调用 Deletek(L, 3, 2),删除从序号3开始的2个元素。
- 创建 S: 使用数组 b 创建 S。
- 测试 Merge2: 调用 Merge2(L, S, C),合并 L 和 S 到 C。
- 测试 Insert: 调用 Insert(C, 13),在有序表 C 中插入13。
- 测试 Move: 调用 Move(C),将 C 中的奇数移到前面。
- 销毁: 程序结束,L, S, C 的析构函数被调用。
对应代码:
C++
int main()
{
int i;
int start;
int count;
int a[] = { 1,20,18,2,2,16,10,8,6,1,3,2,2,1,1,1};
int n = sizeof(a) / sizeof(a[0]);
SqList<int> L; //建立元素类型为int的顺序表对象L
cout << "由数组a创建顺序表L" << endl;
L.CreateList(a, n);
cout << "顺序表L:";
L.DispList();
cout << "逆置顺序表L" << endl;
Reverse(L);
cout << "逆置后,顺序表L:";
L.DispList();
cout << endl;
i = 1;
cout << "删除顺序表L中所有值为"<<i<<"的元素" << endl;
Deletex1(L, i);
cout << "操作后,顺序表L:";
L.DispList();
cout << endl;
i = 2;
cout << "删除顺序表L中所有值为" << i << "的元素" << endl;
Deletex1(L, i);
cout << "操作后,顺序表L:";
L.DispList();
cout << "顺序表L的长度是:" << L.length << ",顺序表L的容量是:" << L.capacity << endl;
cout << endl;
start = 3;
count = 2;
cout << "删除顺序表L中从序号" << start << "起的" << count << "个元素" << endl;
Deletek(L, start, count);
cout << "操作后,顺序表L:";
L.DispList();
cout << "顺序表L的长度是:" << L.length << ",顺序表L的容量是:" << L.capacity << endl;
cout << endl;
int b[] = { 4,5,7,9,11,17 };
int m = sizeof(b) / sizeof(b[0]);
SqList<int> S; //建立元素类型为int的顺序表对象L
cout << "由数组b创建顺序表S" << endl;
S.CreateList(b, m);
cout << "顺序表S:";
S.DispList();
cout << endl;
cout << "合并顺序表L和顺序表S,得到一个新的顺序表C" << endl;
SqList<int> C;
Merge2(L, S, C);
cout << "操作后,顺序表C:";
C.DispList();
cout << "顺序表C的长度是:" << C.length << ",顺序表C的容量是:" << C.capacity << endl;
cout << endl;
i = 13;
cout << "在有序顺序表C中插入元素" << i << ",得到的顺序表C";
Insert(C, i);
cout << "操作后,顺序表C:";
C.DispList();
cout << "顺序表C的长度是:" << C.length << ",顺序表C的容量是:" << C.capacity << endl;
cout << endl;
cout << "将顺序表C中的奇数移到其他元素的前面,得到顺序表C:";
Move(C);
cout << "操作后,顺序表C:";
C.DispList();
cout << "顺序表L的长度是:" << C.length << ",顺序表L的容量是:" << L.capacity << endl;
cout << endl;
cout << "销毁顺序表..." << endl;
return 0;
}
顺序表常用算法解析
3172

被折叠的 条评论
为什么被折叠?



