JOB3:顺序表的应用算法

顺序表常用算法解析

编程达人挑战赛·第3期 10w+人浏览 221人参与

JOB3

实验内容:

1.设计算法,将顺序表L中的所有元素逆置;

void Reverse(SqList<T>& L){...}

2.设计算法,删除顺序表L中所有值为x的元素;

void Deletex1(SqList<T> & L, int x){...}

3.设计算法,删除顺序表L中从序号i开始的k个元素

bool Deletek(SqList<T>& L, int i, int k){...}

4.设计算法,合并两个按元素值递增有序的顺序表A和B中的全部元素,得到新的顺序表C

void Merge2(SqList<T> A, SqList<T> B, SqList<T>& C){...}

 [该算法也可理解为:求两个用顺序表表示的集合A和B的并集C。]

选做题:如何求两集合的差集和交集呢?请你来思考。

5.设计算法,在有序顺序表L中插入元素e,使得该顺序表依然有序

提示:若顺序表满,则插入失败;否则正常执行插入操作。

bool Insert(SqList<T>& L, T e){...}

6.设计算法,将顺序表L中所有值为奇数的元素移动其他元素的前面。

void Move(SqList<T> &L){...}


Job3_SqList_2.cpp 算法应用分析

1. 包含与声明

分析:

  • include "SqList.cpp":包含了我们之前分析过的 SqList 类的完整实现。
  • include <iostream> 和 using namespace std;:用于算法中的 swap(在 Reverse 和 Move 中)以及 main 函数中的 cout。

对应代码:

C++

include "SqList.cpp"                              //引用顺序表泛型类

include <iostream>

using namespace std;


2. 算法1Reverse (顺序表逆置)

分析:

  • 目标 (JOB3-1) 将顺序表L中的所有元素原地逆置。
  • 实现: 使用了双指针法
    • int i = 0, j = L.length - 1;:指针 i 指向表头,指针 j 指向表尾。
    • while (i < j):当两个指针相遇或交错时,逆置完成。
    • swap(L.data[i], L.data[j]);:交换 i 和 j 指向的元素。
    • i++; j--;:两个指针向中间移动。
  • 记忆技巧: “两头对调,向内收缩”。

对应代码:

C++

//将顺序表L中的所有元素逆置

template <typename T>

void Reverse(SqList<T>& L)                          

{

       int i = 0, j = L.length - 1;

       while (i < j)

       {

              swap(L.data[i], L.data[j]);           //序号为i和j的两个元素交换

              i++;

              j--;

       }

}


3. 算法2Deletex1 (删除所有值为x的元素)

分析:

  • 目标 (JOB3-2) 删除顺序表L中所有值为 x 的元素。
  • 实现: 使用了快慢指针法(或称为“压缩法”)。
    • int k = 0;:k 是慢指针,指向下一个“非x元素”应该存放的位置。
    • for (int i = 0; i < L.length; i++):i 是快指针,负责遍历整个数组。
    • if (L.data[i] != x):如果快指针 i 找到了一个不等于 x 的元素。
    • L.data[k] = L.data[i]; k++;:就将其“保留”,放到慢指针 k 的位置,然后 k 后移一位。
    • L.length = k;:遍历结束后,k 的值就是新数组的实际长度(所有 x 都被跳过了)。
  • 记忆技巧: “快指针 i 找,慢指针 k 存”。

对应代码:

C++

//删除顺序表L中所有值为x的元素

template <typename T>

void Deletex1(SqList<T> & L, int x)     

{

       int k = 0;

       for (int i = 0; i < L.length; i++)

              if (L.data[i] != x)                        //将不为x的元素插入到data中

              {

                     L.data[k] = L.data[i];

                     k++;

              }

       L.length = k;                                            //重置L的长度为k

}


4. 算法3Deletek (删除从i开始的k个元素)

分析:

  • 目标 (JOB3-3) 删除顺序表L中从序号 i 开始的 k 个元素。
  • 实现: 利用了顺序表元素前移的特性。
    • if (i < 0 || k < 1 || ...):严格的参数检查,确保 i 和 k 的范围合法。
    • for (int j = i + k; j < L.length; j++):j 从被删除区域的后面第一个元素 (i+k) 开始遍历。
    • L.data[j - k] = L.data[j];:将 j 位置的元素向前移动 k 个位置,覆盖掉 j-k 位置的元素。
    • L.length -= k;:最后,总长度减少 k。
  • 记忆技巧: “跳过 k 个,后面 (j) 的搬到前面 (j-k)”。

对应代码:

C++

//删除顺序表L中从序号i开始的k个元素

template <typename T>

bool Deletek(SqList<T>& L, int i, int k)           //求解算法

{

       if (i < 0 || k < 1 || i + k<1 || i + k>L.length)

              return false;                                             //参数i和k错误返回false

       for (int j = i + k; j < L.length; j++)             //删除k个元素

              L.data[j - k] = L.data[j];

       L.length -= k;                                                  //长度减k

       return true;

}


5. 算法4Merge2 (合并两个有序顺序表)

分析:

  • 目标 (JOB3-4) 合并两个递增有序的顺序表A和B到C。
  • 实现: 类似“归并排序”的合并步骤。
    • int i = 0, j = 0;:i 遍历 A,j 遍历 B。
    • while (i < A.length && j < B.length):当两个表都未遍历完时。
    • if (A.data[i] < B.data[j]) ... else ...:比较 A[i] 和 B[j] 的大小,将较小的那个元素用 C.Add() 添加到 C 的末尾,并移动对应的指针(i++ 或 j++)。
    • while (i < A.length) 和 while (j < B.length):处理其中一个表遍历完后,另一个表剩余的元素,将它们全部 Add 到 C 中。
  • 记忆技巧: “双指针 i j 比大小,小的进 C,指针走。最后处理剩(Sheng)利(Li)者。”

对应代码:

C++

//合并两个按元素值递增有序的顺序表A和B中的全部元素,得到新的顺序表C

template <typename T>

void Merge2(SqList<T> A, SqList<T> B, SqList<T>& C)

{

       int i = 0, j = 0;                             //i用于遍历A,j用于遍历B

       while (i < A.length && j < B.length)              //两个表均没有遍历完毕

       {

              if (A.data[i] < B.data[j])

              {

                     C.Add(A.data[i]);              //归并A[i]:将较小的A[i]添加到C中

                     i++;

              }

              else                                                  //归并B[j]:将较小的B[j]添加到C中

              {

                     C.Add(B.data[j]);

                     j++;

              }

       }

       while (i < A.length)                                  //若A没有遍历完毕

       {

              C.Add(A.data[i]);                              //归并A中剩余元素

              i++;

       }

       while (j < B.length)                                  //若B没有遍历完毕

       {

              C.Add(B.data[j]);                              //归并B中剩余元素

              j++;

       }

}


6. 算法5Insert (有序表插入)

分析:

  • 目标 (JOB3-5) 在有序顺序表L中插入元素 e,使其依然有序。
  • 实现:
    • if (L.length == L.capacity) return false;:检查表是否已满,满了则插入失败。
    • int i = 0; while (i < L.length && L.data[i] <= e):循环查找第一个大于 e 的元素位置 i。
    • for (int j = L.length; j > i; j--) ...:将从 i 位置开始的所有元素向后移动一位(这与 SqList.cpp 中的 Insert 逻辑相同)。
    • L.data[i] = e;:在腾出的 i 位置放入 e。
  • 记忆技巧: “先找到 i (第一个比 e 大的),再从后往前移到 i,最后 i 处放 e”。

对应代码:

C++

//

template <typename T>

bool Insert(SqList<T>& L, T e) 

{

       if (L.length == L.capacity)     // 顺序表空间满时,插入操作被禁止

              return false;

       int i = 0;

       while (i < L.length&& L.data[i] <= e)  // 找到第一个大于e的元素的位置

              i++;

       for (int j = L.length; j > i; j--)     // 将data[i]及后面元素后移一个位置

              L.data[j] = L.data[j - 1];

       L.data[i] = e;                 // 插入元素e

       L.length++;                    // 长度增1

       return true;

}


7. 算法6Move (奇数移动到前面)

分析:

  • 目标 (JOB3-6) 将顺序表L中所有奇数移动到其他元素(偶数)的前面。
  • 实现: 类似“快速排序”的 partition 思想,但使用了 swap。
    • int i = -1;:i 指向“奇数区”的最后一个元素。
    • int j = 0;:j 负责遍历整个数组。
    • while (j < L.length):遍历。
    • if (L.data[j] % 2 == 1):如果 j 找到了一个奇数。
    • i++;:将“奇数区”向后扩大一位。
    • if (i != j) swap(L.data[i], L.data[j]);:关键:如果 i 和 j 不在同一位置,就将 j 找到的奇数与 i 位置的元素(必然是偶数或 j 自身)交换。
    • j++;:j 继续向后遍历。
  • 记忆技巧: “j 探路,i 守城(奇数区)。j 遇奇数,i 扩城,swap(i, j)”。

对应代码:

C++

template <typename T>

void Move(SqList<T> & L) {

       int i = -1;

       int j = 0;

       while (j < L.length) {

              if (L.data[j] % 2 == 1) {

                     i++;

                     if (i != j)

                            swap(L.data[i], L.data[j]);

              }

              j++;

       }

}


8. main 函数 (测试流程)

分析: main 函数按顺序调用了上述所有算法,以验证它们的正确性。

  • 创建 L 使用数组 a 创建 L。
  • 测试 Reverse 调用 Reverse(L) 并显示结果。
  • 测试 Deletex1 连续两次调用 Deletex1(L, 1) 和 Deletex1(L, 2),删除所有1和2。
  • 测试 Deletek 调用 Deletek(L, 3, 2),删除从序号3开始的2个元素。
  • 创建 S 使用数组 b 创建 S。
  • 测试 Merge2 调用 Merge2(L, S, C),合并 L 和 S 到 C。
  • 测试 Insert 调用 Insert(C, 13),在有序表 C 中插入13。
  • 测试 Move 调用 Move(C),将 C 中的奇数移到前面。
  • 销毁: 程序结束,L, S, C 的析构函数被调用。

对应代码:

C++

int main()

{

       int i;

       int start;

       int count;

       int a[] = { 1,20,18,2,2,16,10,8,6,1,3,2,2,1,1,1};

       int n = sizeof(a) / sizeof(a[0]);

       SqList<int> L;             //建立元素类型为int的顺序表对象L

       cout << "由数组a创建顺序表L" << endl;

       L.CreateList(a, n);

       cout << "顺序表L:";

       L.DispList();



       cout << "逆置顺序表L" << endl;

       Reverse(L);

       cout << "逆置后,顺序表L:";

       L.DispList();

       cout << endl;



       i = 1;

       cout << "删除顺序表L中所有值为"<<i<<"的元素" << endl;

       Deletex1(L, i);

       cout << "操作后,顺序表L:";

       L.DispList();

       cout << endl;



       i = 2;

       cout << "删除顺序表L中所有值为" << i << "的元素" << endl;

       Deletex1(L, i);

       cout << "操作后,顺序表L:";

       L.DispList();

       cout << "顺序表L的长度是:" << L.length << ",顺序表L的容量是:" << L.capacity << endl;

       cout << endl;



       start = 3;

       count = 2;

       cout << "删除顺序表L中从序号" << start << "起的" << count << "个元素" << endl;

       Deletek(L, start, count);

       cout << "操作后,顺序表L:";

       L.DispList();

       cout << "顺序表L的长度是:" << L.length << ",顺序表L的容量是:" << L.capacity << endl;

       cout << endl;





       int b[] = { 4,5,7,9,11,17 };

       int m = sizeof(b) / sizeof(b[0]);

       SqList<int> S;              //建立元素类型为int的顺序表对象L

       cout << "由数组b创建顺序表S" << endl;

       S.CreateList(b, m);

       cout << "顺序表S:";

       S.DispList();

       cout << endl;

       cout << "合并顺序表L和顺序表S,得到一个新的顺序表C" << endl;

       SqList<int> C;

       Merge2(L, S, C);



       cout << "操作后,顺序表C:";

       C.DispList();

       cout << "顺序表C的长度是:" << C.length << ",顺序表C的容量是:" << C.capacity << endl;

       cout << endl;



       i = 13;

       cout << "在有序顺序表C中插入元素" << i << ",得到的顺序表C";

       Insert(C, i);

       cout << "操作后,顺序表C:";

       C.DispList();

       cout << "顺序表C的长度是:" << C.length << ",顺序表C的容量是:" << C.capacity << endl;

       cout << endl;





       cout << "将顺序表C中的奇数移到其他元素的前面,得到顺序表C:";

       Move(C);

       cout << "操作后,顺序表C:";

       C.DispList();

       cout << "顺序表L的长度是:" << C.length << ",顺序表L的容量是:" << L.capacity << endl;

       cout << endl;



       cout << "销毁顺序表..." << endl;

       return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值