Python制作自动答题脚本,100%准确率,1秒10题提高效率

前言

环境使用

  • Python 3.8
  • Pycharm

模块使用

  • import requests —> 数据请求模块 pip install requests
  • import parsel —> 数据解析模块 pip install parsel
  • from selenium import webdriver —> 自动测试模块 pip install selenium==3.141.0

本次案例代码实现思路:

  1. 打开考试网站
  • selenium --> 浏览器驱动 --> 操作浏览器 <模拟人的行为做操作浏览器>
  1. 获取答案
  • 获取答案网站链接
  • 获取问题以及答案内容
  1. 对比题目以及答案 选出正确答案
  • 获取问题答案选项
  • 和正确的答案进行对比
  • 如果正确答案和选择答案一致, 那就进行点击
  1. 进行点击答题

最终效果

 

导入模块

from selenium import webdriver
# 导入数据请求模块
import requests
# 导入数据解析模块
import p
参考资源链接:[Python计算机视觉答题卡识别判分系统实现](https://wenku.csdn.net/doc/66xcmafcp9?utm_source=wenku_answer2doc_content) 为了确保答题卡图像能够被准确识别,图像预处理和特征提取是至关重要的步骤。首先,我们需要对答题卡图像进行灰度化处理,这可以简化图像数据并减少后续处理的复杂度。接着,应用二值化处理,将图像转换为黑白两色,以突出答题卡上的标记。此外,去噪操作有助于清除图像中的不必要的干扰信息,如扫描时产生的噪音或笔迹上的阴影。 在图像预处理之后,我们需要提取出答题卡的关键特征。对于选择,重点是识别涂鸦标记的位置,这通常涉及到轮廓检测和模式匹配算法。对于填空,我们需要运用OCR(光学字符识别)技术来识别手写或印刷的文字。在某些情况下,可能还需要应用机器学习或深度学习模型来提高识别的准确率,例如使用卷积神经网络(CNN)来识别复杂的图像模式。 这个过程中,Python的OpenCV库是一个强大的工具,它提供了丰富的图像处理函数。而Pillow(PIL)库则可以用于图像的基本操作。至于特征提取和识别部分,可以利用如Tesseract OCR引擎来实现文字识别,或者使用专门的机器学习库,如scikit-image和TensorFlow,来进行更复杂的图像分析和识别。 在整个系统中,Django框架负责管理Web层面的任务,如用户交互和数据展示,而图像处理和识别逻辑则主要由Python脚本和相关库来完成。实现这一系统的过程中,不断测试和优化算法是至关重要的,以确保系统能够在不同条件和答题卡质量下都能保持较高的准确率和鲁棒性。 参考资源链接:[Python计算机视觉答题卡识别判分系统实现](https://wenku.csdn.net/doc/66xcmafcp9?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值