求任意两个正整数的最大公约数:
【解题思路】
求解最大公约数可以使用欧几里德算法,也就是常说的辗转相除法。它是用较大的数(当被除数)去除较小的数(当除数)。若除得尽,则较小的数,即除数,就是这两个数的最大公约数。若除不尽,就先求出它们的余数,再拿刚才较小的数去除这个余数,反复操作直到除得尽为止,则此时的除数就是它们的最大公约数。
方法一:
a=int(input("输入一个数字"))
b=int(input("再输入一个数字"))
m=[]
if a>b:
smaller=b
else:
smaller=a
for i in range(1,smaller+1):
if (a%i==0) and (b%i==0):
m.append(i)
continue
n=m[-1]
print ("%d和%d的最大公约数为:%d" %(a,b,n))
print ("%d和%d的最小公倍数为:%d" %(a,b,a*b//n))
方法二:
a, b = map(int, input("输入两个数").split())
a1, b1 = a, b
res = a1 % b1
while res != 0:
a1 = b1
b1 = res
res = a1 % b1
print("最大公约数为:"+str(b1)+"最小公倍数为:"+str(a*b/b1))