算法分析:最大公约数

求任意两个正整数的最大公约数:

 

【解题思路】

        求解最大公约数可以使用欧几里德算法,也就是常说的辗转相除法。它是用较大的数(当被除数)去除较小的数(当除数)。若除得尽,则较小的数,即除数,就是这两个数的最大公约数。若除不尽,就先求出它们的余数,再拿刚才较小的数去除这个余数,反复操作直到除得尽为止,则此时的除数就是它们的最大公约数。

方法一:

a=int(input("输入一个数字"))
b=int(input("再输入一个数字"))
m=[]
if a>b:
    smaller=b
else:
    smaller=a
for i in range(1,smaller+1):
    if (a%i==0) and (b%i==0):
        m.append(i)
    continue
n=m[-1]
print ("%d和%d的最大公约数为:%d" %(a,b,n))
print ("%d和%d的最小公倍数为:%d" %(a,b,a*b//n))

方法二:

a, b = map(int, input("输入两个数").split())
a1, b1 = a, b
res = a1 % b1
while res != 0:
    a1 = b1
    b1 = res
    res = a1 % b1
print("最大公约数为:"+str(b1)+"最小公倍数为:"+str(a*b/b1))

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值